
CONTENT-BASED TEMPORAL

PROCESSING OF VIDEO

Robert A. Joyce

a dissertation

presented to the faculty

of princeton university

in candidacy for the degree

of doctor of philosophy

recommended for acceptance

by the department of

electrical engineering

November 2002

c© Copyright 2002 by Robert A. Joyce.

All rights reserved.

Abstract

Multimedia information is most often stored, browsed, and transmitted as simply “raw”

data, a set of opaque files. Digital video and audio in particular benefit tremendously from

“content-aware” processing; as the salient content information is often temporal in nature,

we study both the extraction and applications of the temporal structure of media streams.

We begin by examining some of the fundamental issues behind and goals of automated

temporal processing. From there, the problem of gradual transition detection in video is

explored, and we present methods to detect both dissolve and wipe-based transitions, even

in the presence of special graphical effects. Combining video transition detection with neural

network-based predictors, we apply the principles of content-aware processing to improve

the channel multiplexing efficiency of variable bit rate video streams.

The integration of video, audio, and other data is essential to any temporal analysis

of media streams. Segmentation in these modalities, as well as distance metrics between

segments of the same stream, are developed. We examine issues in comparing distance

metrics of different modalities, and develop a normalization scheme that takes into account

both the distance metrics’ statistics and prior probabilities on perceptual segment distances.

Using this distance information, we construct a matrix-based representation that allows

quick identification of “idiomatic” sequences, such as dialog or character introductions, in

both audio and video. This representation also has a graphical interpretation, which allows

the use of shortest-path and similar algorithms, and can associate related but visually

dissimilar segments by crossing the boundary between audio and video. Such a graph is

itself a useful visualization tool, as it can show transitive connections between segments that

would not otherwise be clear. Using detected idiomatic sequences and other criteria, we

generate a hierarchy of such graphs, which allows a user to zoom in on sections of interest

without being presented with hundreds of segments at once.

i

Acknowledgements

This thesis would not have been written were it not for the help of numerous people through-

out the past half-decade. First and foremost, I am indebted to Bede Liu, whose advice,

help, and enthusiasm have been unrelenting. I very much appreciate the freedom he has

given to explore new ideas and avenues of research, and he has been wonderfully willing to

discuss whatever off-the-wall idea, or unlikely descriptive analogy, I’ve come up with. Both

as a teaching assistant and advisee, he as been a joy to work for.

I am similarly grateful to Wayne Wolf and Bradley Dickinson, whose advice, comments,

and questions during both the thesis proposal and the writing of this document have been

vital to the finished product.

Min Wu’s contributions to the work on video bandwidth prediction were significant,

both in terms of ideas as well as Matlab code. Discussions with Min, as well as S.-Y. Kung,

Ling Guan, and Hau-San Wong, shaped the direction of our work in this area. Dr. Wong

developed the neural network-based feature selection algorithm detailed in Section 3.2.3.

The ideas presented here have also drawn significant inspiration from the work of Dr. Liu’s

previous students and others, including but certainly not limited to Minerva Young, Boon-

Lock Yeo, and Heather Yu. Finally, the insights of academic siblings Peng Yin, Minghui

Xia, and Scott Craver have been a near-constant source of ideas and refinements.

The State of New Jersey, the National Science Foundation, Intel Corporation, and the

New Jersey Center for Multimedia Research have all generously supported our research

through my years at Princeton. The U.S. Army Research Office contributed significantly

to early portions of this work.

The tireless Jay Plett deserves many thanks, not only for computing support, but for

friendship, sage advice, and the opportunity to learn from a guru. His insights, both tech-

nical and otherwise, will be missed. Thanks also to Stephanie Eggers and Karen Williams

ii

for administrative support and smoothing over the bureaucratic process.

Julio Concha, Rich Radke, Brian Irvine, Norm Hess, Paul Zimmons, Matt Tangvald,

Abby Bechtel, Nature, and Mom and Dad: were it not for their support, inspiration, and

love, I’d have never gotten to this point.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Gradual Transition Detection 9

2.1 Compressed-Domain Processing Preliminaries 11

2.2 Frame-Space Dissolve Detection . 12

2.3 Histogram Space Wipe Detection . 18

2.4 Analysis of the Correlation Statistic . 25

2.5 Experimental Results . 34

2.5.1 Dissolve Detection with Simple Detector 34

2.5.2 Dissolve Detection via Parametric Detector 35

2.5.3 Wipe Detection . 40

3 Content Analysis for Traffic Prediction 42

3.1 Bandwidth Renegotiation Points . 45

3.2 Traffic Prediction per Interval . 46

3.2.1 Media Stream Traffic Descriptors . 48

3.2.2 Content Features . 49

3.2.3 Feature Selection for Traffic Prediction 53

3.2.4 Consistency-Based Feature Selection 57

3.3 Experimental Results . 60

3.3.1 Prediction MSE . 60

iv

3.3.2 Trace-Driven Link Utilization . 63

4 Multimodal Processing 67

4.1 Existing Audio/Video Techniques . 68

4.2 Speaker Segmentation and Distance Metrics 70

4.3 Video Shot Distance Metric . 74

4.4 Audio/Video Distance Normalization . 75

5 Association Matrices 86

5.1 Prior Work . 86

5.2 Association Matrix Construction . 88

5.3 A/V Association Matrices . 89

5.4 Idiomatic Sequence Detection . 99

5.4.1 Detection of Prototype Sequences . 102

5.4.2 Generation of Idiomatic Sequences’ Prototype Matrices 107

5.4.3 Cross-modality Idiomatic Sequences 114

5.4.4 Detector Experimental Results . 116

6 Structure via Multimodal Processing 119

6.1 Prior Temporal Structure Work . 120

6.2 Association Graphs . 121

6.2.1 Shortest Paths . 122

6.2.2 Transitive Path Existence . 123

6.3 Memory-Based Graphs and Matrices . 124

6.4 Inferring Plot Threads . 126

7 Visualization of Multimodal Structure 130

7.1 Plotting a Single Graph . 132

7.1.1 Horizontal Placement . 132

7.1.2 Vertical Placement . 134

7.1.3 Drawing the Graph . 135

7.2 Node Ranking . 137

7.3 Hierarchical Graphing . 141

v

7.4 Hierarchical Graph Examples . 143

8 Summary and Conclusions 154

Bibliography 159

Index 174

vi

List of Tables

3.1 Candidate content and traffic features for use in per-interval traffic prediction 52

3.2 MSE traffic prediction results, comparing features 62

3.3 MSE traffic prediction results, comparing the SFS/GRNN and consistency-

based approaches . 62

5.1 Detection and false alarm rates for the idiomatic sequences 117

7.1 Segment rank assignment for hierarchical graphing 140

vii

List of Figures

2.1 Three-dimensional representation of a video sequence f in frame space during

a dissolve . 14

2.2 The DFD-based correlation sequence ρdfd(k, L) for a segment of documentary

video . 17

2.3 Sample wipe sequences from network television, showing the wide variation

possible . 19

2.4 The sequence ρhist(k, L) for a segment of news video containing two wipes . 22

2.5 Triplet correlation values ρdfd for dissolve and non-dissolve segments 26

2.6 Triplet histogram correlation values ρhist for wipe and non-wipe segments . 27

2.7 ρdfd “noise” after the dissolve indicator signal s(k) is subtracted 28

2.8 Distribution of dissolve transition lengths, measured from 95 dissolves . . . 29

2.9 Dissolve likelihood function L(l) for a sample sequence 32

2.10 Distribution of L(l) values for dissolve and non-dissolve segments of 13 min-

utes of video . 33

2.11 ROC plot for the parametric dissolve detection method on a 13 minute tele-

vision video sequence . 37

2.12 recall×precision for the parametric dissolve detector, over a range of TL and

Tdist . 38

2.13 ROC plot for our wipe detection algorithm over 23.5 minutes of video, in-

cluding some synthetic wipes . 41

viii

3.1 Traffic prediction scenarios with different delays 47

3.2 Neural network based traffic prediction, using both short-term traffic obser-

vations and content features to determine the entire shot’s traffic patterns . 48

3.3 Error plot for SFS/GRNN feature selection and corresponding feature subsets 56

3.4 Four traffic classes derived by K-mean clustering on the two principal com-

ponents of D-BIND, the first step in consistency-based feature selection . . 58

3.5 Sorted consistency measures for each candidate content feature, when used

individually . 59

3.6 Overall structure of the VBR resource predictor 60

3.7 Traffic prediction MSE using different intervals and predictor inputs 64

3.8 Network utilization for multiplexed sources, computed by trace-driven simu-

lation . 66

4.1 Empirical distributions for the cepstral mean audio shot distance metric . . 73

4.2 Empirical distributions for the two-key-frame video shot distance metric . . 76

4.3 Prior probabilities of “same,” “similar,” and “different” speaker segments as

a function of the number of segments separating them 79

4.4 Prior probabilities of “same,” “similar,” and “different” video shots as a

function of the number of shots separating them 80

4.5 Minimum-cost thresholds dividing measured audio distance values into three

subjective regimes, “same,” “similar,” or “different,” as a function of the

number of audio segments separating the two test segments 82

4.6 Minimum-cost thresholds dividing measured video distance values into three

subjective regimes, “same,” “similar,” or “different,” as a function of the

number of video shots separating the two test shots 83

5.1 Perceptually normalized distance matrices for a 7 minute Charlie Rose inter-

view clip . 93

ix

5.2 Perceptually normalized distance matrices for the 7 minute Charlie Rose

interview clip, with element widths proportional to segment lengths 94

5.3 Charlie Rose audio-audio and video-video time-normalized distance matrices

superimposed over one another . 95

5.4 Perceptually normalized distance matrices for a 7.5 minute CBS news clip . 96

5.5 Superimposed audio-audio and video-video time-normalized distance matri-

ces for a 7.5 minute CBS news clip . 97

5.6 Superimposed audio-audio and video-video time-normalized distance matri-

ces for a 71 second segment from NBC’s sitcom “Frasier” 98

5.7 Perceptually normalized distance matrices for the first 10 minutes of CBS’s

“The Late Show with David Letterman” . 100

5.8 Superimposed audio-audio and video-video time-normalized distance matri-

ces for the first 10 minutes of CBS’s “The Late Show with David Letterman” 101

6.1 Schematic graph of our plot thread model 127

7.1 Plot of the memory-based graph for the first 65 seconds of the “Charlie Rose”

clip . 137

7.2 Plot of the memory-based graph for the entire “Late Show with David Let-

terman” clip . 138

7.3 Hierarchical browsing interface example . 142

7.4 “Charlie Rose” top level graph . 144

7.5 “Charlie Rose” level 2 graph . 144

7.6 “Charlie Rose” level 3 graph . 145

7.7 “Charlie Rose” base level graph . 145

7.8 “The Late Show with David Letterman” level 2 graph 146

7.9 “The Late Show with David Letterman” level 3 graph 147

7.10 “The Late Show with David Letterman” level 4 graph 147

x

7.11 “Frasier” level 2 graph . 149

7.12 “Frasier” level 3 graph . 149

7.13 “Frasier” base level graph . 150

7.14 CBS local news level 2 graph . 151

7.15 CBS local news level 3 graph . 152

7.16 CBS local news level 4 graph . 152

7.17 CBS local news base level graph . 153

7.18 Entire CBS local news base level graph . 153

xi

Chapter 1

Introduction

Video and audio have long been a dominant means of communication, and the quantity of

media in the digital domain is increasing at a rapid pace thanks to the wide availability of

video digitizing hardware and editing equipment. Transmission, storage, and management

of large quantities of video benefit from—and in many cases, require—knowledge of the

“content” of the media at some level above that of a raw data stream.

The definition of “content” is highly application-dependent. For example, a news video

library requires the annotation of important speakers and locations, as well as identification

of topic changes and specialty segments, such as weather or health reports. If the library is

to be used for browsing as well as keyword searches, as is the case for films and entertainment

television, there must be some method for extracting a summary or preview that contains

important highlights yet is easily understandable. Databases and search systems require

that extracted information be stored in a compact, standardized format.

Consumer applications, while perhaps less demanding than commercial video libraries,

are beset by their own set of issues: equipment must be inexpensive yet deal with possibly

vague queries, video may be unedited (such as home movies) or in an otherwise unconven-

tional organization, and summary information must be presented in an intuitive fashion,

comprehensible without training. These requirements hem in the types of analysis that can

be performed; for instance, it may be difficult to identify principal characters or locations,

1

CHAPTER 1. INTRODUCTION 2

and common editors’ patterns will not be present to aid in segmentation.

Efficient transmission of multimedia streams is yet another venue for the use of content

information. Knowledge of low-level content information, such as when a shot or scene

change occurs, is useful in bandwidth allocation schemes. Internetwork routers can also

benefit from content-aware processing, by selectively dropping less important packets or

routing critical ones over more reliable paths. Depending on the memory available to

the client, temporal content information can yield more efficient compression, allowing

selected frames to be saved and used much later as reference images. Higher-level semantic

information allows “important” spatial or temporal information to be transmitted with

higher fidelity than ancillary or background content.

There are a number of commonalities in the applications of content analysis:

• Automated extraction: Manual annotation of large audio and video collections, in

either the analog or digital domains, requires an immense investment in manpower to

perform. Large news organizations can have so much incoming video that continuous

manual annotation is nearly impractical. Live media sources are even more difficult to

handle; automatic annotation is often the only solution. In situations where automatic

annotation cannot capture the desired information, algorithms are often available that

will assist in manual annotation by finding segments likely to contain items of interest.

• Standardized annotation: In archiving and search applications, as well as in trans-

mission applications where there are multiple client architectures, it is vital to agree

upon an application-independent representation of content information. The emerging

MPEG-7 standard provides a method of codifying extracted information in an XML-

like format [1, 2]. The standard will not specify how information is to be extracted,

nor precisely what information must be available for a given stream.

• Temporal information dominates: The information to be extracted is often tem-

poral in nature, whether it be due to segmentation, association of distant frames or

CHAPTER 1. INTRODUCTION 3

scenes, or extraction of salient fragments from the stream. Even when some of the de-

sired information is non-temporal, it must first be determined which frames or audio

intervals to use as the basis for any static detection or classification algorithm.

The dominance of temporal information forms the basis of this thesis; in the creation of

indexing structures, annotations, and summaries, temporal relationships are precisely what

differentiate image collections from audio and video databases.

A necessary first step in any temporal processing is to segment the media stream into

more manageable chunks, typically according to “natural” temporal boundaries occurring

throughout the stream. As audio and video segments are seldom precisely aligned in time,

and at this stage little further content information is available, we segment audio and video

independently to maintain generality.

Video streams are typically divided into semantic segments called “scenes,” which are

further subdivided into “shots” [3, 4, 5]. A video shot is defined as a single continuous

camera action, from the start of recording to a subsequent stop on the same camera [6]. (The

prevalence of computer-based graphic effects often blurs the definition of a shot boundary;

to be precise, we consider any boundary-like action causing a dramatic transition of more

than 50 percent of the image area to be a shot boundary.) A contiguous collection of related

shots, usually taking place in the same location, form a scene.

Shot and scene segmentation of video have been long-studied, particularly when the seg-

ment transitions are abrupt (such as cuts). In Chapter 2, we develop methods of segmenting

video when the transitions are gradual in nature, whether they be due to dissolves, wipes,

or more complex graphical effects. When combined with a conventional cut detector, these

techniques form a comprehensive video segmentor.

Similar shot and scene definitions can be constructed for audio data, complicated some-

what by the fact that audio is sometimes edited in a manner that belies its underlying

structure. For example, background music can blend two “segments” together, or inserted

CHAPTER 1. INTRODUCTION 4

sound effects can falsely split segments. Nonetheless, we consider audio “shots” to be con-

tinuous spoken segments by a single speaker, or isolated musical selections. As in video,

contiguous sets of related audio shots form “scenes,” such as dialog. (These notions are

somewhat distinct from the field of “auditory scene analysis,” which more often deals with

overlapping source separation in complex aural environments [7, 8].)

Due to the fact that typical audio streams contain many varying, superimposed sound

sources, reliable audio segmentation has been an elusive goal. We visit some of the issues

and tradeoffs involved in Chapter 4, as audio segmentation is necessary for true multi-media

content extraction.

Once a reliable segmentation system is established, straightforward applications can be

explored. One such application is in improving the efficiency of transmitting variable bit

rate (VBR) compressed video. Situations requiring bandwidth estimation, such as sta-

tistical multiplexing and metered/scheduled channels, traditionally deal with VBR video

inefficiently: bandwidth reservations for the VBR peak rate are wasteful, while those for the

average rate will likely result in dropped packets during complex segments. In Chapter 3, we

apply both video segmentation and mid-level content feature measurement to the problem

of predicting future VBR bandwidth requirements. This prediction method outperforms

those based solely on bit rate statistics, allowing greater overall channel utilization and

fewer unnecessarily dropped packets.

While video data is the dominant source of information in VBR bandwidth predic-

tion, joint video and audio content is of fundamental importance to indexing and browsing

engines. Chapter 4 discusses some of the issues in merging information from multiple modal-

ities. A central issue is how to make meaningful comparisons between measured statistics

of audio and video, such as the similarity of two segments. We develop a normalization

scheme that allows distance metrics within any modality (and where applicable, between

sources) to be used on equal footing in later processing.

We introduce in Chapter 5 a method of compactly representing distance information

CHAPTER 1. INTRODUCTION 5

from multiple modalities in a media stream. While useful to an expert as a structural

visualization method, we also focus on its applications in finding higher-level “idiomatic”

events in conventionally-edited media, such as dialog and character introductions. The

remaining chapters all use information directly available via this representation, which we

call an “association matrix.”

The primitives of shot and scene are vital in segmenting a media sequence, and are

reasonable atomic units for indexing, retrieval, and transmission applications, but they do

not always capture the complete temporal structure of a sequence. In addition, some media

genres contain shots that cannot be sensibly collected into scenes in the traditional sense.

Obtaining intra- and cross-modality distance information allows for the exploitation of

transitive distances: it is possible to associate two video segments, for instance, that are

superficially dissimilar. Such methods suggest a graph-based interpretation of the combined

distance information, which we use in Chapter 6 to extract relationships between distinct

shots and scenes and to correlate audio and video segmentation data. Long-term transitive

associations are then used in an attempt to capture semantic threads of plot. Even when

such a high-level interpretation is not possible, transitive associations are still useful in

generating summaries and in flagging important events, such as when two formerly distinct

paths merge.

Finally, we apply the content extraction tools we have developed to the generation

of hierarchical summaries of multimedia streams in Chapter 7. Hierarchical summaries

are vital as stream length increases, as it is impossible to capture all the information a

browsing user may wish to know in a single screen. We instead allow the user to “zoom in”

on segments of interest, panning around as necessary, in a map-like paradigm. Segments are

presented to the user according to a ranking determined by a number of factors, including

any idiomatic sequences they belong to, where the segments occur, and their duration.

In extracting content information in its various forms from a media stream, there are

a number of goals we keep in mind. Not all can be adhered to in all instances, but our

CHAPTER 1. INTRODUCTION 6

methods are developed with the following as priorities:

Generality

Automated processing systems for audio and video streams must strike a balance between

generality and the degree to which real “content” information can be extracted. Algorithms

that are applicable to large classes of streams, from dramatic films to sports to newscasts to

home movies, can at best make heuristic guesses as to what extracted low-level information

means in terms of “content,” at least in any sense to which humans can relate. Likewise, it

is possible to infer reliable high-level information if one is restricted to very narrow domains

of video, such as recordings of specific sporting events in specific styles, or news broadcasts

on particular television channels [9, 10, 11].

Our approach in this thesis is provide tools that are general, in the sense that they extract

mid-level information that is useful independent of the particular domain or genre of video

being analyzed. Domain-specific knowledge can be applied at higher levels of analysis to

infer further information, given the mid-level information we’ve extracted. Such knowledge

can also be used to improve our mid-level algorithms (for example, having a model of

the general temporal structure of a certain news program can help in segmentation), but

that is left as an implementation issue. The details of any particular domain or genre are

intentionally avoided in our algorithms.

Causality

An important goal for any media processing system is causality: any information extracted

on-line must depend only on audio and video data in the past. As delay is often tolerable,

this requirement can be relaxed a bit in some cases; a small, fixed amount of future data may

be used if the output decisions are delayed by an equal amount. Causality is particularly

crucial for live sources, long-duration material, or media sources being digitized on-the-fly

from analog storage. Restricting ourselves to causal processing also reins in the on-line

CHAPTER 1. INTRODUCTION 7

storage capacity needed by the algorithms while they are running. Finally, causality can

prevent some possible deadlock situations when jointly processing audio and video streams.

Complexity

Naturally, computational requirements (CPU, memory) are an important consideration

given the sheer size of raw video and audio data streams. Live sources require processing

to be faster than real time, and even off-line but on-the-fly digitization benefits greatly

from real-time processing because of the specialized analog playback hardware that would

otherwise be needed.

When video and audio analysis algorithms are used on media servers, either in an on-line

capacity or in building off-line databases for later use, the fact that many streams will be

analyzed simultaneously must be taken into consideration. A streaming server performing

on-line traffic prediction, for example, might be doing so for dozens of distinct streams and

network conditions at the same time.

Finally, low complexity is advantageous because there is often much more processing

left to do beyond what will be described in this thesis; even algorithms that operate in real

time may not be fast enough when the whole system is taken into consideration.

Tests with Real-World Data

For any video and audio analysis algorithms to be widely useful, they must be tested

“in the wild,” with streams of the type likely to be encountered. While instructive, it is

not enough to only test with artificially-constructed streams having specific properties to

exercise certain aspects of an algorithm. In the detection of gradual transitions in video,

for example, the gamut of transition types in common use eclipses any test set one could

reasonably create. In addition, transitions seen in film or television video are likely not as

precise or noise-free as those constructed in the lab.

To the extent possible, the tools also should be robust to common distortions that occur

CHAPTER 1. INTRODUCTION 8

in real-world video streams, such as multiple A/D and D/A conversions, transmission over

the air in NTSC, and playback through consumer VHS video recorders.

With these priorities in mind, we proceed to the first step in the temporal processing of

multimedia streams: the segmentation of video.

Chapter 2

Gradual Transition Detection

As we saw in the last chapter, the accurate division of a media stream into meaningful

constituent segments is a vital prerequisite to temporal processing. The detection of abrupt

transitions (“cuts”) between video shots has been extensively studied in both the compressed

and uncompressed domains. Gradual transitions, which are more likely to mark scene

boundaries than are cuts, pose a much more difficult problem. Such transitions can be

roughly divided into two classes: those that simultaneously but gradually affect every pixel

of the image, and those that abruptly affect an evolving subset of the pixels, with the

subset changing in each frame. Over a number of frames, the cumulative change—due

to the summed gradual changes or to the union of pixel subsets—forms the gradual shot

boundary.

The first class includes dissolve and fade-in/out effects, and one could argue that dis-

solves and fades are the only members of this class. Much work has been done on dissolve

and fade detection, particularly with the use of reduced-resolution frames and motion vec-

tors gathered directly from the compressed stream [12]–[21]. Comparison studies have been

conducted by Boreczky, Lienhart, and Gargi, among others [22, 23, 24].

What are commonly thought of as wipe effects are members of the second class, although

for brevity the term “wipe” will herein be used to describe any transition abruptly affecting

an evolving subset of pixels. Wipes are often utilized in television news and sports coverage,

9

CHAPTER 2. GRADUAL TRANSITION DETECTION 10

as well as in movies. In sports video, for example, wipes are generally used to denote the

beginning and end of an instant replay; thus, detection of wipes would allow an indexing

system to separate replays from live action, thereby preserving continuity in time. During

newscasts, wipe transitions often signal a change in story or topic.

Qualitatively, wipe transitions are generally characterized by the slow sliding in or un-

covering of an image from a new shot, while simultaneously covering up or sliding out the

old shot. At any instant during the transition, the frame contains some of the old content

as well as some of the new. The “edge” of the wipe—the moving spatial boundary between

the old and new shots—can be a single line or a complex pattern. Multiple boundaries

may also be present within the same transition. Recently there has been a trend toward

using blurred wipe boundaries; attempting to detect the exact wipe edge can be difficult.

Often, the transition is generated by computer, in which case three-dimensional projec-

tions or other special effects may be present. On occasion, computer-generated artwork will

completely cover the image, creating an intermediate step in the wipe’s progression.

One common method of wipe detection involves extraction and counting of edges in

the image; this statistic will monotonically change during a transition, from the old shot’s

value to the new shot’s value [25, 26, 27]. This generally must be performed on uncom-

pressed video, and is computationally expensive. In the compressed domain, methods have

been proposed that analyze a projection or subset of the DC DCT coefficients, looking for

progressions of abrupt pixel changes [28, 29, 30]. Progressions of changes in encoder motion-

prediction decisions have also been used, as have progressions in partial-frame histogram

intersections [31, 32]. A method has been proposed by which the statistical characteristics

of wipe sequences are detected [33]. Clustering algorithms in reduced-dimension pixel and

histogram spaces have been used to detect transitions as well [34]. Kobla, et al., combined

pixel and histogram-based distance metrics after excluding sections of the video containing

significant motion [35]. Finally, Fernando, et al., used the Hough transform on spatially-

reduced frames to detect and characterize the style of certain types of wipes [36]. The

CHAPTER 2. GRADUAL TRANSITION DETECTION 11

majority of these algorithms depend on the video producer using only a limited amount of

computer graphics or artwork, and assume little motion adjacent to and during the wipe.

With the prevalence of computer-generated wipes, the sharp boundaries and simple one-

directional wipe models are likely to fail on modern video; what is needed is a more general

method, independent of the direction or style of wipe, and robust to any reasonable amount

of producer-added effects (for instance, blurring, page-turning, shadows, and projections).

Some preliminary results of the work described here were presented in [37] and [38].

2.1 Compressed-Domain Processing Preliminaries

Ideally, the segmentation process would be done in real-time, either from a live feed or a sin-

gle pass of videotape. However, the computation time required to decode compressed video

and perform image-processing operations on full frames, while decreasing with progress in

processor design, remains significant. This complexity constraint becomes even more trou-

blesome when considering that shot and scene decomposition are only the first steps of the

indexing process; there is much yet to do. In addition, most sizable digital video libraries

are likely to be in compressed form, if only to save space. For these reasons, analyzing video

streams directly in the compressed domain is advantageous.

For concreteness, we will focus on MPEG-1 video in this chapter, but the algorithms

presented apply equally well to other block/transform-based video compression schemes [39].

One natural technique of compressed-domain analysis is reduced-resolution processing:

using a subset of the block transform coefficients to reconstruct thumbnail-sized images.

Of particular interest is the construction of so-called “DC frames,” which are comprised of

the lowest-order DCT coefficients of each MPEG block (and are therefore one sixty-fourth

the size of the full frames). For intracoded (I) frames, construction of DC frames is trivial.

Intercoded (P,B) frames require full decompression of their reference frames for exact DC

reconstruction. Instead, rapid first-order estimation techniques are used to construct DC

CHAPTER 2. GRADUAL TRANSITION DETECTION 12

frames for intercoded compressed frames [16]. If computation time is very critical, a slight

speedup can be gained by resorting to simpler zero-order estimation techniques; the negative

impact on the final results is small. Similar methods can be used to construct DC+2AC

frames, which are formed from the DC and two lowest-order AC coefficients of each block.

The 2×2 IDCT then required for each block is simple to compute.

Aside from their computational advantages, DC sequences are more suitable for video

analysis in many respects. Primarily, the artifacts of MPEG compression and video noise

are significantly reduced at the lower resolution. In addition, small amounts of camera or

object motion, which dramatically affect the registration of adjacent frames’ pixels at the

full-frame level, are obscured at such a low resolution.

Displaced frame differences (“DFD’s”), which are the pixel-by-pixel differences between

frames after any motion compensation, can be computed for P frames without full decom-

pression. DC DFD’s require no computation at all, as they are just the lowest-order DCT

coefficients of the residue frame, which are available directly in the coded stream. Other

reduced-resolution DFD’s can be computed via low-order inverse DCT’s.

Unless otherwise noted, first-order estimated DC sequences are used in all calculations

for the remainder of the thesis. In MPEG-1 sequences, the DC frames are typically 44× 30

pixels in size.

2.2 Frame-Space Dissolve Detection

At its most basic, a dissolve or fade is a time-varying superposition of two video streams.

Let fk(x, y) denote the value of pixel (x, y) in frame k of sequence f , with gk(x, y) and

hk(x, y) defined similarly. A dissolve from sequence g to sequence h, lasting from frame m

to frame n, can therefore be described by

fk(x, y) = αkhk(x, y) + (1− αk) gk(x, y) (2.1)

CHAPTER 2. GRADUAL TRANSITION DETECTION 13

where αk is an increasing sequence, with αm = 0 at the beginning of the dissolve and

αn = 1 at the end. It is often assumed that the sequence αk increases linearly, but this

is not necessarily the case; particularly artistic dissolves may have a pause, a long lead-in

time, or some other non-linearity in αk.

For the moment, we assume there is negligible motion in the sequences g and h. For

compactness, we denote by fk the vector formed by all the pixels of frame k (the ordering

is irrelevant, as long as it is consistent). With color video, each pixel has three dimensions

in color space; fk then contains three times as many elements as there are pixels in a

frame. Consider the trajectories formed by fb − fa and fd − fc, where m < a < b < n and

m < c < d < n. Substituting the model in (2.1) yields

fd − fc = (αd − αc) (αb − αa)−1 [fb − fa] (2.2)

during a dissolve. As αk is an increasing sequence, (αd − αc) (αb − αa)−1 > 0. This con-

dition is equivalent to the statement that, during a dissolve, the normalized correlation, ρ,

between any two trajectory vectors is 1. If one considers each vector fk as being in a frame

space, then the video’s trajectory in this space will be a straight line during a dissolve, as

shown in Figure 2.1. Natural, non-dissolve motion in a stream generally does not have this

characteristic; it is uncommon for all the pixels in the image to evolve in the same way,

frame after frame. Note that linearity in frame space is distinct from the condition that αk

increases linearly; we make no such assumption about the time progression of the dissolve.

In order to check this condition, we are faced with four concerns: limited memory (we

cannot store all the frames), limited computation time, no a priori knowledge of the start

or end of the dissolve, and the fact that there may be some object or camera motion in the

frame. Analysis of three nearby frames at a time offers a good compromise among these

considerations. Using frames k − L, k, and k + L, we can compute two length-L frame

differences, where

dLk (x, y) = fk(x, y)− fk−L(x, y) ∀x, y (2.3)

CHAPTER 2. GRADUAL TRANSITION DETECTION 14

dissolve

h
g

Pixel L intensity

Pixel K intensity

Pixel J intensity

Figure 2.1: Three-dimensional representation of a video sequence f in frame space during
a dissolve between sequences g and h.

is the k-th difference frame, and dLk is the corresponding vector in frame space. The corre-

lation, as a function of k and L, is then

ρ(k, L) =

〈
dLk+L, d

L
k

〉
√∥∥∥dLk+L

∥∥∥2 ∥∥dLk ∥∥2
, (2.4)

where 〈·, ·〉 represents an inner product. A “straight” triplet of frames is declared if the the

correlation is high enough, i.e., if

ρ(k, L) ≥ Tcorr (2.5)

for an appropriate threshold Tcorr.

In order to declare a dissolve, we require that condition (2.5) hold for every k in some

sequence of frames, say from m to n. A condition on the length of this line in frame space

is also needed; we require that

‖fn − fm‖ ≥ Tdist. (2.6)

The length condition is necessary because small changes (e.g., in frame brightness) can

CHAPTER 2. GRADUAL TRANSITION DETECTION 15

lead to the correlation condition being met for an isolated triplet or two. Instead of (2.6),

a simpler threshold on the length in number of frames can be used, but the frame-space

length condition is more robust to eliminating false detections.

The testing of (2.5) and (2.6) can be done sequentially, with no knowledge of future

frames beyond k + L, according to the following algorithm:

while (k + L ≤ total number of frames)

if (ρ(k, L) ≥ Tcorr)

n = k + L

if (m not yet set)

m = k − L

else if (m is set)

if (‖fn − fm‖ ≥ Tdist)

declare dissolve

unset m

end

k = k + L

end

Regarding the selection of L, we note that the effects of motion diminish as L→ 1, but

decreasing L leads to more false alarms, as it is possible to construct a long non-straight

line in frame space which has local correlations near 1. As L is increased, computational

requirements are lessened, but it becomes more likely that outliers (from a straight line)

will be obscured by the coarse granularity of sampled frames. Selecting L = 3, which means

only the I and P frames in many MPEG-1 streams, provides a resonable compromise: slow

motion is not destructive, and the computation time and number of false alarms are both

reasonable.

While many dissolves do indeed have little motion, this is not universally true; any

CHAPTER 2. GRADUAL TRANSITION DETECTION 16

rapid object or camera motion during the transition will prevent the frame-space linearity

condition from holding. (Local linearity might still hold though, if L is small.) Simple

object or camera motion can be compensated for by using DFD’s (Section 2.1), instead of

the true frame differences, in (2.4). In addition, much computation is eliminated, due to the

ease of extracting (DC) DFD’s. Unfortunately, this does place a dependency on how the

particular MPEG encoder was designed; to maintain some consistency among computed

correlation values, we restrict analysis to only P frames. (This requires us to ignore two

triplets per MPEG group of pictures (GOP), namely the PPI and PIP, because one of the

two required DFD’s cannot be reliably computed in each case.) If we denote the DFD

between frame fk and frame fk−L as d̃Lk , the correlation calculation in (2.4) becomes

ρdfd(k, L) =

〈
d̃Lk+L, d̃

L
k

〉
√∥∥∥d̃Lk+L

∥∥∥2 ∥∥∥d̃Lk ∥∥∥2
. (2.7)

A plot of this ρdfd sequence for a sample documentary clip with two dissolves is shown in

Figure 2.2; note the sharp increase during the dissolve frames.

Values for Tcorr and Tdist should be set based on the desired false alarm rate and detection

accuracy. In many cases, false alarms are not as detrimental as missed events in shot

decomposition; detection accuracy can be improved if some false alarms are allowed. As

the values of the frame-space correlations can depend on non-content-related factors such as

frame size, video noise, and compression artifacts, the mean of the pastM values of ρdfd(k, L)

is subtracted before the Tcorr comparison is made. (This is equivalent to gently high-pass

filtering the ρdfd sequence.) More thorough post-processing of the correlation sequence is

detailed in Section 2.4, and specific experimental results are presented in Section 2.5.

The algorithm’s computational requirements can be lessened, on the other hand, by

sacrificing some detection probability. Roughly one third of the computation time can be

saved by using only the luminance space in DFD extraction and ρdfd calculation. In addi-

tion, a significant number of multiplications can be eliminated by assuming
∥∥∥dLk+L

∥∥∥ ≈ ∥∥∥dLk ∥∥∥
during a dissolve; aside from the analysis to be described in Section 2.4, this is equivalent

CHAPTER 2. GRADUAL TRANSITION DETECTION 17

0 100 200 300 400 500 600 700

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

frame number, k

ρ df
d(k

,3
)

Figure 2.2: The DFD-based correlation sequence ρdfd(k, L) for a segment of documentary
video, with L = 3; dissolves occur during frames 115–140 and 492–516.

CHAPTER 2. GRADUAL TRANSITION DETECTION 18

to the detection method of Yeo, et al., and similar schemes [16]. This assumption limits the

detector to finding dissolves with linear αk sequences. With the same limitation, all non-

trivial multiplications can be eliminated by computing, for each triplet, the raw difference

between the center frame and the pixel-wise mean of the outer frames.

The dissolve detectors described here can be easily extended to the detection of partial-

frame dissolves, such as caption appearances or split-screen transitions. In this application,

ρdfd is calculated for the region of interest, or absent this knowledge, for a set of blocks

within the image. ρdfd may be calculated for each pixel in the extreme case, yielding

dissolve “frames” that show the degree to which each pixel is within a dissolve sequence.

2.3 Histogram Space Wipe Detection

One can imagine many effects in which an evolving subset of pixels changes abruptly in each

frame. The simplest wipes are those in which one sequence gradually covers or replaces

another, with no global movement of either sequence. More complicated wipes can involve

one stream “sliding” in over another, or one “pushing” another aside. “Zoom” based wipes

can also be created in this manner, with a new stream appearing from the center of the

old one, expanding to fill the whole frame. Finally, complex computer-generated wipes can

include page-turning effects, projections, or artistic wipe boundaries; for a few examples,

see Figure 2.3. One or more frames may not even contain content from either adjacent

shot; this is particularly common in sports video, where a large computer-generated object

passes across the field of view to effect a transition using two back-to-back wipes. Due to

the broad range of gradual transitions that fall within the wipe class, a detection method

tailored to a specific wipe is likely to miss many other kinds of wipes.

As in the dissolve case, we assume a wipe transition from sequence g to sequence h,

from frame m to frame n. A simple, overlap-based wipe can be described as

fk(x, y) = Ik(x, y)hk(x, y) + [1− Ik(x, y)] gk(x, y) (2.8)

CHAPTER 2. GRADUAL TRANSITION DETECTION 19

Figure 2.3: Sample wipe sequences from network television, showing the wide variation
possible.

CHAPTER 2. GRADUAL TRANSITION DETECTION 20

where fk is the resulting frame k, and Ik(x, y) is either 0 or 1 for each k, x, and y. Ik(x, y) = 0

for all x and y when k < m (before the wipe), and Ik(x, y) = 1 when k > n (after the wipe).

In the case where one or both sequences slide in or out of the frame, (2.8) becomes

fk(x, y) = Ik(x, y)hk (x+ xh,k, y + yh,k)

+ [1− Ik(x, y)] gk (x+ xg,k, y + yg,k) (2.9)

where the wipe-induced motion of the sequences is described by xg,k, yg,k, xh,k, and yh,k.

Even these two models are more restrictive than one would like; they preclude the detection

of many artistic wipes, for example. Natural object motion in video typically fits these

models as well, yielding only limited usefulness. The important information of each model

is that contained in the sequence Ik(x, y); as such, we will concentrate on ‖Ik‖. This

sequence should increase from 0 to N , the number of pixels in the image, as k increases

from m to n. For most wipes, ‖Ik‖ will increase linearly or quadratically.

One representation of a video stream that allows us to examine the ‖Ik‖ sequence,

without the restrictions of specific wipe models, is the histogram. We denote the p-th bin

of frame fk’s histogram as Fk(p) (the number of bins, P , is a free parameter); we will

use the same vector shorthand of Fk, for some arbitrary ordering of bins. Assuming for the

moment that each frame’s histogram is fairly uniform across different portions of the image,

the histograms during a wipe can be expressed as

Fk(p) =
(‖Ik‖+ EG,k(p)

N

)
Gk(p) +

(
1− ‖Ik‖+ EH,k(p)

N

)
Hk(p), (2.10)

where EG,k(p) and EH,k(p) are error terms resulting from the spatial non-uniformity in the

histograms of g and h, respectively. Note that this histogram-based wipe model has the

same form as the frame-space model (2.1) for a dissolve! If the values of EG,k and EH,k are

small and fairly constant in k, it also meets the conditions we imposed on the coefficients

αk from the dissolve case. Specifically, the quantity

βk =
‖Ik‖+ EG,k(p)

N
(2.11)

CHAPTER 2. GRADUAL TRANSITION DETECTION 21

will be increasing in k from 0 to 1, and

1− ‖Ik‖+ EH,k(p)
N

≈ 1− βk. (2.12)

Such a parallel immediately suggests a wipe detection algorithm. As in the dissolve case,

the correlation between any two histogram difference vectors (Fb − Fa and Fd − Fc) will

be 1 during an ideal wipe. Moreover, a wipe will appear as a straight line in a histogram

space, where each dimension corresponds to one bin of the histogram. (This linearity is

independent of any nonlinearity in the time progression of the wipe.) In the same manner

as the dissolve case, we define the L-frame histogram difference DL
k (p) as

DL
k (p) = Fk(p)− Fk−L(p) ∀p. (2.13)

We compute the correlation sequentially, from triplets of frames:

ρhist(k, L) =

〈
DL
k+L, D

L
k

〉
√∥∥∥DL

k+L

∥∥∥2 ∥∥DL
k

∥∥2
. (2.14)

This value is compared to a threshold, and following the algorithm presented for the dissolve

detector on page 15, the value of (2.6) is computed to determine the length of the candidate

wipe; a wipe transition is declared if both thresholds are met. Note that a condition

similar to (2.6) could be computed in the histogram space; we have not done so, due to

the unwanted constraint this imposes that the two adjacent shots must have sufficiently

different histograms. The sequence ρhist for a sample stream is given in Figure 2.4.

As in the dissolve case, Tcorr and Tdist should be chosen to achieve the desired bal-

ance between detection probability and false alarm rate. Once again, to counter the fact

that the mean value of ρhist is somewhat dependent on the type of video and the record-

ing/compression quality, the mean of the last M values is subtracted before thresholding

against Tcorr.

Any natural change in g or h’s histograms through time (due to motion or other effects)

introduces a deviation from ρhist = 1 in the same manner as motion in g or h did in the

CHAPTER 2. GRADUAL TRANSITION DETECTION 22

100 200 300 400 500 600
−1

−0.5

0

0.5

frame number, k

ρ hi
st

 (
k,

1)

Figure 2.4: The sequence ρhist(k, L) for a segment of news video containing two wipes.
L = 1 in this case, and wipes occur in frames 197–209 and 352–364.

CHAPTER 2. GRADUAL TRANSITION DETECTION 23

dissolve case. As L is decreased, such effects decrease as well, and Gk − Gk−L → 0 and

Hk−Hk−L → 0 because the g and h histograms are very unlikely to change abruptly (except

in the case of a scene cut).

In addition, as L is decreased, the effect of errors terms EG,k and EH,k in (2.10) di-

minishes. This is due to the use of triplets: the deviation from spatial uniformity in the

histogram is only important in the region that actually changes over the frame range k−L

to k + L. In a wipe, the size of this region (a vertical slice of the image, for example)

vanishes as L → 0. For these reasons, we set L = 1 from here on; this agrees with ex-

perimental results obtained by varying L. In cases where the histogram non-uniformity is

caused by an object’s edge entering or exiting the region of significance, the effect on ρhist

will be impulsive—the straight line in histogram space will now be piecewise linear, with

some small number of vertices.

Equation (2.10) makes a computational assumption: the number of pixels in any his-

togram must be an integer, yet the coefficient βk may be such that the equation requires

a non-integral number of pixels in a particular bin of Fk. This quantization error, if sig-

nificant, can reduce the correlation among the adjacent pair of vectors in a triplet. The

error can be reduced by using fewer histogram bins, as well as by increasing the spatial

resolution at which one operates (using a low resolution or a large number of bins would

force very small quantities of pixels into many bins, making any quantization errors in the

intermediate frame of a triplet more significant). For this reason, we perform the histograms

on DC+2AC frames and use 2 to 4 histogram bins per color dimension.

Better characterizing these data-dependent quantization and histogram non-uniformity

errors remains an open problem, but their effects on ρhist can be reduced by low-pass filtering

or otherwise post-processing the resulting correlation sequence (under the assumption that

the errors in ρhist(k, L) are approximately independent in k). The generally impulsive errors

due to EG,k and EH,k suggest the use of a median filter (or more generally, an nth-largest

filter), which while nonlinear, does have a sufficiently low-pass characteristic to help with the

CHAPTER 2. GRADUAL TRANSITION DETECTION 24

quantization noise. As an added benefit, low-pass filtering helps alleviate the time-varying

histogram distortions that MPEG compression and video noise can introduce.

One issue has not yet been addressed: can natural motion in video have the linear

histogram-space characteristic? Pathologically structured object motion into or out of a

frame can cause a straight line in the histogram-space, as can panning the camera if the

image contents and histograms change radically during the pan. Experimentally, the number

of false alarms attributed to object motion has been shown to be fairly small in natural video,

provided the image histogram does not change radically during the pan. False detections

due to panning can only be eliminated at the expense of missing “push” type wipes (which

are arguably a type of panning). This can be done by computing the temporal variance of

each macroblock’s motion vectors—low variance corresponds to constant motion in some

direction through time. Specifically, using P frame motion vectors during the candidate

wipe, we calculate the temporal variance of each macroblock’s X motion vector plus the

temporal variance of its Y motion vector. If some fraction (TMF) of the macroblocks have a

variance sum greater than a threshold TMV , then the candidate wipe is confirmed. If TMV

is not met for a sufficient number of macroblocks, a wipe is not declared. False alarms could

be further reduced by adding additional constraints; one example is requiring the ratio of∥∥∥DL
k

∥∥∥ to
∥∥∥DL

k+L

∥∥∥ to be either constant or linear.

In practice, we find that dissolves are often falsely detected as wipes by our algorithm.

A dissolve does not have the linearity property in histogram space; rather, the histogram of

the old shot is progressively shifted, bin by bin, toward all pixels being in the “black” bin;

the new shot is correspondingly shifted bin-wise from black to its final histogram. However,

if the shot histograms are fairly continuous from bin to bin (i.e., there are no spikes in

particular bins, with adjacent bins nearly empty), then the dissolve can masquerade as a

linear change in histogram space. This is particularly problematic when the number of bins

is small; spikes are very unlikely when there are only a few bins. The simplest solution is

to cascade the transition detectors: only try to detect wipes in areas previously declared

CHAPTER 2. GRADUAL TRANSITION DETECTION 25

not to be dissolves. While this introduces a two-level detection dependency—dissolve false

alarms will contribute to wipe misses—the results are greatly improved.

2.4 Analysis of the Correlation Statistic

Given that the detection algorithms introduced in Sections 2.2 and 2.3 are so similar once

the correlation statistics are computed, it is useful to study the ρ sequences’ statistics. Any

information gained can be used to derive a more optimal (yet computationally expensive)

detector.

Figure 2.5 shows the distributions of ρdfd values for 13 minutes of video, separated into

dissolve and non-dissolve segments (after filtering out cuts); Figure 2.6 is the wipe case.

The overlap in densities is not as bothersome as it might appear, because detection is done

on variable-length sets of frames (using the algorithm presented in Section 2.2), not on

individual triplets.

One interpretation of the distributions, particularly those of ρdfd, is that of a signal+noise

detection problem where the signal of interest (denoted s(k)) is a binary indicator of whether

there is a transition during the triplet. More precisely, during transitions we set s(k) to

be the mean value of the correlation statistic over all transition sequences, and outside of

transitions we set s(k) to be the mean ρ over all non-transition triplets. (In the wipe case, the

clipping of the values to ±1 causes the noise distribution to not be independent of s(k); this

could be alleviated by more sophisticated detection-theoretic techniques.) If we subtract

s(k) from ρdfd(k, L), we find the measurement error due to motion, compression, etc., is

nearly an ideal Gaussian process with sample variance 0.0387 (Figure 2.7). The process

n(k), where n(k) = ρdfd(k, L)−s(k), is not white noise—its power spectrum is tilted toward

DC—but is fairly independent of s(k). (The coarseness of the Figure 2.5’s distribution

within transition regions is due to the relatively small number of triplets comprising it.)

The length of the transition is unknown during the detection process, yet we would

CHAPTER 2. GRADUAL TRANSITION DETECTION 26

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

ρ
dfd

 value (triplet correlation)

P
D

F

dissolve
no dissolve

Figure 2.5: Triplet correlation values ρdfd for dissolve (solid line) and non-dissolve (dashed
line) segments. The sample variance for the dissolve segments is 0.0406; for the non-dissolve
segments, 0.0387.

CHAPTER 2. GRADUAL TRANSITION DETECTION 27

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ρ
hist

 value (histogram triplet correlation)

P
D

F

wipe
no wipe

Figure 2.6: Triplet histogram correlation values ρhist for wipe (solid line) and non-wipe
(dashed line) segments. The sample variance for the wipe segments is 0.1386; for the non-
wipe segments, 0.2175.

CHAPTER 2. GRADUAL TRANSITION DETECTION 28

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

noise in dissolve ρ

pd
f v

al
ue

measured from 13min
ideal Gaussian

Figure 2.7: ρdfd “noise” after the dissolve indicator signal s(k) is subtracted.

CHAPTER 2. GRADUAL TRANSITION DETECTION 29

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

m (transition length in frames)

w
(m

)
 (

pr
ob

ab
ili

ty
 o

f a
n

m
−

le
ng

th
 tr

an
si

tio
n)

Figure 2.8: Distribution of dissolve transition lengths, measured from 95 dissolves. Some
values are interpolated from neighboring samples.

like to take advantage of the interdependence of the s(k) values; this can be done using

a parametric detector that averages over some given distribution of test signals. In this

case, the parameter is the transition length; an estimated distribution of dissolve lengths,

measured from 95 transitions, is shown in Figure 2.8. We call this PMF w(m). Note that,

even within the framework of the simple detector presented in Section 2.2, this distribution

could be used to eliminate inordinately short or long false detections.

Optimum parametric detectors in non-i.i.d. Gaussian noise are well known [40]. Such

detectors by necessity work on blocks of input data, where the block in our case must be

CHAPTER 2. GRADUAL TRANSITION DETECTION 30

longer than the support of the parameter’s PMF. Denote this block length K; w(m) = 0

for m > K. In order to make each block’s noise statistics consistent, we require that

blocks begin at a compressed group-of-pictures (GOP) boundary; otherwise, we have a

non-stationary noise as the block start shifts through one GOP. Block l therefore contains

frames lt through lt+K − 1, where t is the length of a GOP.

For simplicity, all time indices that follow are given in terms of frames, whereas the

detector’s actual calculations need to be done in terms of triplets. Once the GOP structure

of a stream is known, converting frame- to triplet-distances is straightforward. Also note

that in the dissolve case, where we have L = 3 and use DFD’s, one must account for the two

skipped triplets (PPI and PIP) per GOP when calculating transition lengths; such issues

are ignored in the following.

We begin by setting µ0 to be the (estimated) mean of the ρdfd values when no transition

is present; µ1 is the mean during dissolves and fades. Denote by R(l) the column vector of

measurements formed by ρdfd(k, L) − µ0, where lt < k < lt + K − 1. We then construct a

parameterized set of K-length test signal vectors, S(p, q), 0 ≤ p ≤ t− 1 and 1 ≤ q ≤ K − p,

where again t is the length of a GOP:

S(p, q) = [0 · · · 0︸ ︷︷ ︸
p

µ · · ·µ︸ ︷︷ ︸
q

0 · · · 0]T (2.15)

where µ = µ1−µ0. Essentially, S contains every possible transition length of interest, with

starting points anywhere within the first GOP (starting points within later GOP’s will be

detected in subsequent blocks). The stationary block-based problem can then expressed

as R(l) = N(l) + S(p, q) for some p and q. The density w(m) must mapped into W (p, q)

according to the length of the transition tested in S(p, q), giving1 W (p, q) = w(q).

As the noise sequence n(k) is not i.i.d., neither is the noise vector N(l), so both the

received signal blocks R(l) and the test signal vectors S(p, q) must be pre-whitened; de-

note the whitened vectors R̄(l) and S̄(p, q), respectively. The whitening can be done by
1If certain triplets are skipped, such as the GOP boundary triplets mentioned in Section 2.2, this equation

must be modified to account for the non-constant time increments that depend on p.

CHAPTER 2. GRADUAL TRANSITION DETECTION 31

estimating the covariance matrix ΣN and multiplying by one of its Cholesky factors [40].

Given the set of S̄ vectors, the block PMF W (p, q), and the pre-whitening matrix (C−1),

the transition likelihood function can be calculated for each block of correlations R(l) as

follows:

L(l) =
∑
p,q

W (p, q) exp
[(
S̄T (p, q)C−1R(l)

)
− 1

2

(
S̄T (p, q)S̄(p, q)

)]
(2.16)

A sample plot of L(l) in Figure 2.9 shows that this approach extracts dissolves quite

well from the ρdfd sequence. A histogram of L(l) for dissolve and non-dissolve segments is

shown in Figure 2.10 (note the log scale); when compared to Figure 2.5, the improvement

is clear. As argued in Section 2.2, it is also necessary to test the L2 length of a candidate

dissolve in frame space before declaring a transition. Specifically, a dissolve transition is

declared when both the following inequalities hold:

log10L(l) > TL and ‖flt+Q−1 − flt+P ‖ ≥ Tdist, (2.17)

where P and Q are the values of p and q corresponding to the largest term in the sum (2.16).

The transition in this case begins at frame lt+P and ends at frame lt+Q− 1. Transitions

often span multiple GOP’s, so that L(l) > TL for two or more consecutive values of l; in

such cases, we declare the frames corresponding to the largest L(l) value as the dissolve

transition. Given our “on-then-off” prototype sequences S(p, q), the (locally) largest L(l)

during a dissolve is generally the first one.

This parametric detection structure could also be useful for the more general case of

gradual transition detection, where some statistic is computed per frame (or set of frames)

and the probability density of transition lengths is known or estimated, provided that the

“noise” in measurements is approximately Gaussian and, more crucially, independent of

s(k).

As can be seen in Figure 2.6, the “noise” in ρhist is highly dependent on s(k) (and is

not Gaussian); applying the parametric detector unaltered indeed yields poor results. In

the absence of tractable independent noise models, the only way to improve detection with

CHAPTER 2. GRADUAL TRANSITION DETECTION 32

0 100 200 300 400 500 600

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

frame number

L(
l)

of
 c

lo
se

st
 b

lo
ck

Figure 2.9: Dissolve likelihood function L(l), expressed in terms of the frame number be-
ginning each block of triplets l; note the logarithmic scale. The sample MPEG stream is
the same as in Figure 2.2.

CHAPTER 2. GRADUAL TRANSITION DETECTION 33

−5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

log
10

(L(l))

P
D

F

dissolve
no dissolve

Figure 2.10: Distribution of L(l) values for dissolve and non-dissolve segments of 13 minutes
of video; again note the log scale.

CHAPTER 2. GRADUAL TRANSITION DETECTION 34

ρhist is to compare sample densities to the two in Figure 2.6. Such a comparison is likely to

be problematic, as the number of samples within a given block is small (and there is no way

to refine the temporal resolution beyond the block level). ρhist could certainly benefit from

further analysis, however; it is possible for example that some neural network or adaptive

filter structure exists which will improve the results.

2.5 Experimental Results

Each algorithm was tested with “natural” television and film footage, digitized from VHS

tape sources with a hardware MPEG-1 encoder. The resulting video quality is hardly per-

fect, making for a good workout of each transition detector. Each test stream was digitized

at a resolution of 352 × 240 and a frame rate of 29.97 fps. The test sets consisted of news

video from different networks, documentary footage and other material. All computation

was performed on a 350 MHz Sun workstation.

2.5.1 Dissolve Detection with Simple Detector

A thirteen minute collection of video was used as a “training” set, on which parameter

values were selected. The training set’s 23700 frames contained 59 dissolves, 115 cuts, and

6 wipes, as well as some significant object and camera motion. Most of the dissolves were

clearly visible, but three were between images so similar that a casual human viewer likely

would not notice the transition. The dissolves ranged in length from 12 to 65 frames, and

a number of the transitions contained motion of some sort.

Testing yielded good results with Tcorr = 0.15, after the mean of the past 125 values

was subtracted. (Depending on the video, the effective Tcorr was between 0.4 and 0.8.)

Tdist = 55000 (normalized to the number of macroblocks per frame) and at least 3 successive

above-threshold triplets were required in order to declare a dissolve. With these values, 52

out of the 59 dissolves were properly detected, with 24 false alarms (a rate of one per 2633

CHAPTER 2. GRADUAL TRANSITION DETECTION 35

frames). Different thresholds can be selected to yield different detection probability versus

false alarm tradeoffs. In most cases, the detector correctly identified the locations of the

transition start and end to within four frames.

These results confirm that frames pace correlation is a reasonable statistic to use for

dissolve detection, and that using DFD’s is an effective way to combat the errors in correla-

tion introduced by shot motion. By visual inspection of ρdfd(k, L) plots, one can generally

pick out all of the dissolves (even the ones that are missed); this leads us to believe that

a more sophisticated detector could produce better results using the same ρdfd sequence.

Results for such a detector, that described in Section 2.4, are presented in the next section.

Including the overhead due to DC frame extraction, our algorithm processed video at

about 170 frames per second. In fact, about 95% of the processing time is spent parsing

the MPEG stream and calculating the DC frames; once the DC frame is available, our

algorithm takes only an additional 0.3 ms/frame on the test machine. Speed in parsing

could likely be improved through better optimization of our partial MPEG decoder.

2.5.2 Dissolve Detection via Parametric Detector

Once the ρdfd(k, L) sequence is computed, the detector outlined in Section 2.4 can be applied

as an alternative to the simple detector. Using the same 23700-frame test sequence, TL =

0.1, and Tdist = 55000, the parametric detector correctly found 53 out of 56 dissolves, with

12 false alarms2. Of the three missed dissolves, one fell at the very end of a GOP and was

short enough to not affect any DFD’s; another overlapped slightly with a wipe transition.

The final missed transition was likely due to unfortunate motion-compensation decisions on

the part of the encoder, such that the DFD’s did not suggest gradual changes in each pixel.

Seven of the 12 false alarms were due to cuts, which could be eliminated if a cascaded

“cut-dissolve-wipe” detector were implemented. (As a proof-of-concept, we implemented

such a cascaded detector using the cut detector developed by Yeo, et al.; six of the seven
2The total number of dissolves is 56, not 59 as in the previous test, because 3 of the dissolves occur within

K frames of the end of a stream, thus are never tested against the S(p, q) sample vectors.

CHAPTER 2. GRADUAL TRANSITION DETECTION 36

cut-induced false alarms were indeed eliminated.) Three more of the 12 were “dissolve-like”

operations, such as captions or computer-graphic effects fading away. The total number of

false alarms, if one discounts those due to cuts and dissolve-like effects, is 2 per 13 minutes

of video.

At the expense of a higher false alarm rate, the detection probability can be pushed up to

0.982; 31 false alarms were produced in this case. Disregarding caption fades and cuts, the

false alarm count falls to 15 (slightly more than one per minute). Different detection/false

alarm tradeoffs are possible; Figure 2.11 shows the raw false alarm rate corresponding to a

number of detection probabilities.

An alternative quality measure is to find the maximum achievableQ = (recall×precision)

value, where recall is the detection probability and precision is the number of correct detec-

tions divided by the total number of detections (correct or not). A perfect detector is one

with Q = 1. (In practical applications, the quantity of false alarms is not as critical as the

weighting given to them in the Q measure defined here, but this metric is a reasonable basis

for comparison.) Automated detection and false alarm counting techniques were used to

iteratively find the maximum Q for the parametric detector; the maximum, 0.8395, occurs

when TL = 1.5 and Tdist = 67000, yielding a detection probability of 0.891 and a false alarm

rate of 0.228 per minute. The Q values over a small range of TL and Tdist are shown in

Figure 2.12.

The parametric detector was also tested on longer streams, a total of 23 additional

minutes; in addition to news and documentary footage, the longer streams contained a

number of commercials. Blindly using TL = 0.1 and Tdist = 55000, 108 out of 149 dissolves

were detected, with 36 false alarms (1.57 per minute). Discounting false alarms due to cuts

and caption fades, the number drops to 24 (1.04 per minute). If necessary, further processing

can be done to shrink the number of false alarms (for example, requiring each triplet’s frame

space vectors have at least a certain L2 length during a dissolve, or utilizing other statistical

properties dissolve transitions must have). Most of the missed detections occurred during

CHAPTER 2. GRADUAL TRANSITION DETECTION 37

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

P(D)

fa
ls

e
al

ar
m

s
pe

r
m

in
ut

e

Figure 2.11: ROC plot for the parametric dissolve detection method on a 13 minute (23695
frame) television video sequence. The false alarm rate is the number of false detections
divided by the total sequence length; caption fades and similar effects, when detected, were
counted as false alarms.

CHAPTER 2. GRADUAL TRANSITION DETECTION 38

−1
0

1
2

3
4

2

4

6

8

10

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

L(l) thresholdL2 frame distance threshold

re
ca

ll
×

pr
ec

is
io

n

Figure 2.12: recall× precision for the parametric dissolve detector, over a range of TL and
Tdist; the maximum occurs at TL = 1.5 and Tdist = 67000.

CHAPTER 2. GRADUAL TRANSITION DETECTION 39

the commercial segments, where large numbers of dissolves appeared right after one another

(often, with few non-dissolve frames in between). As designed, our parametric detector will

not detect more than one transition within K frames, which alone accounts for 10 misses;

by adding more complicated 1/0 sequences to the test set S(p, q), these could be detected

at some computational expense. (One could make an argument that the short non-dissolve

segments in cases like this aren’t “shots” in the same sense as those in non-commercial

segments.)

In most cases, within each test segment, the false alarms had lower likelihood function

values F(l) than the real transitions (yet still above threshold); very few non-transition

regions induced higher likelihood function values than the smallest dissolve segment’s value.

The cutoff region for TL varies somewhat by stream, generally according to the content

and the MPEG encoder. (This variation is significantly less than the stream-dependent

variation in the simple detector’s optimal Tcorr.) One way to both address this issue and to

provide the user with more control over the coarseness of the temporal segmentation is to

allow presentation-time control of TL. The user would increase the TL “knob” for coarser

segmentation (avoiding caption fades, etc), and decrease it to see the less dramatic gradual

transitions (for instance, those involving only a portion of the screen). This operation

would require efficient storage of the L(l) sequence, and fairly rapid threshold testing and

presentation, as the threshold would be unknown at the time of analysis.

When the largest term of the sum in (2.16) is examined as suggested at the end of

Section 2.4, the temporal accuracy of the derived start and stop points for each dissolve is

generally better than 4 frames. Given that the B frames are ignored, it is impossible to be

more accurate than roughly 2 frames on average with our test streams.

As most of the computation time is spent extracting DC frames and DFD’s, the speed

decrease induced by this detector is minimal (on the order of K2 additional multiply-adds

per GOP).

CHAPTER 2. GRADUAL TRANSITION DETECTION 40

2.5.3 Wipe Detection

In testing the wipe algorithm, the training video set was augmented by short clips with

artificial wipes (between TV news shots) created with Adobe Premiere 4.2. Forty test

clips, with varying parameters and styles of wipes, were created. The first shot of each clip

contained mild object motion, and the second shot of each was a slow zoom; neither shot

was motionless during the wipe. The combined length was 42100 frames, or 23.5 minutes.

Sixty out of 62 wipes were detected, with 35 false alarms, when using the parameters

Tcorr = 0.25 (after the running mean was subtracted), Tdist = 61000, and 2 histogram bins

per color dimension (for a total of 8 bins). Motion vector temporal variance checking was

used, with TMF = 0.4 and TMV = 2.5, to confirm potential wipes. The misses were mainly

due to adjacent shots having very similar histograms: one example is a wipe between two

close-up views of a basketball play, having very similar histograms; except for its white

boundary, the transition was barely visible to the eye. Most of the false alarms were due to

close-up panning during a tennis segment, where the histograms changed wildly.

Using the same parameter set, the algorithm was tested on a feature-length movie

containing 28 wipes of varying styles, along with significant motion and special effects. 14

of these wipes were detected, with a false alarm rate of 4.0 per minute. Again, most of

the false alarms were due to rapid camera motion in action sequences. The wipes that

were not detected were ones with very broad borders, within which the two images were

blurred together; in this region, the histograms will not be linearly combined (some of the

transitions were in fact midway between a wipe and a dissolve). Naturally, the results will

improve if the parameters are tailored to this particular stream, and different detection

versus false alarm tradeoffs can be reached.

The wipe algorithm requires about 2.9 ms/frame of computation time; when added to

the 18.1 ms/frame required to extract the DC+2AC frames, the algorithm runs at a rate of

nearly 48 frames per second. If the dissolve algorithm is cascaded with the wipe algorithm,

the overall processing speed is 46 frames per second.

CHAPTER 2. GRADUAL TRANSITION DETECTION 41

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P(D)

fa
ls

e
al

ar
m

s
pe

r
m

in
ut

e

Figure 2.13: ROC plot for our wipe detection algorithm over 23.5 minutes (42147 frames) of
video, including some synthetic wipes. The false alarm rate is the number of false detections
divided by the sequence length.

Chapter 3

Content Analysis for Traffic
Prediction

The transmission of multimedia streams over bandwidth-limited shared networks is a com-

plex problem, as one needs to cope with the ever-changing system parameters: the number

of data sources and receivers, the bandwidth required by each source stream, and the topol-

ogy of the network itself. An optimal resource allocation system must dynamically consider

global strategies (network-wide management) as well as local strategies (e.g., access control

for individual connections); in the following sections, we focus on the local strategies only.

Bandwidth allocation and management for individual streams generally must be done

at the “edges” of the network, in order to conserve computational resources on internetwork

switches. Such systems will likely not have complete knowledge of the network state, and

must therefore make their use of network resources as minimal as possible to maintain a

given quality of service (QoS). If a source requests more bandwidth than it actually uses, the

overall network utilization drops. Conversely, if the source exceeds its bandwidth request,

packet loss and delay will become significant. While offline systems could compute the exact

dynamic bandwidth requirements for a stream before transmitting it, on-line processing

is desirable in many applications. Systems such as video conferencing and live news-on-

demand absolutely require on-line processing. In addition, on-line processing is needed in

any system that dynamically transcodes video, or that splices and combines segments in an

42

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 43

interactive manner. To keep delay and computational requirements low, any information

used to make bandwidth decisions should be directly available in the compressed video

stream. It is desirable to have a resource management system that can accurately estimate

the required bandwidth in real-time.

We focus on the resource management of variable bit rate (VBR) video1, which offers

consistent perceptual quality. The hallmark of VBR video is that its bandwidth under-

goes both short- and long-term changes, in reaction to the complexity—and therefore,

compressibility—of the underlying video. No one-time bandwidth allocation will provide

loss-free VBR video transmission with high utilization and low delay. For MPEG-1 and

MPEG-2 streams, the bit rate variations can be up to an order of magnitude and occur

on two different time scales. The shorter time scale corresponds to the duration of the

GOP (group of pictures); the variation is due to the fact that intracoded (I) frames gener-

ally require more bits than forward predicted (P) frames, which in turn require more bits

than bidirectionally predicted (B) frames. The brief spikes in traffic caused by I frames

are generally not a problem for networks; as most MPEG compressors produce only two or

three I frames per second, a small buffer can adequately smooth the traffic if some delay

is tolerable. The long-term variation is brought about by changes in the semantic con-

tent of different shots and scenes. Such bandwidth changes cannot be easily absorbed by

reasonable-capacity network buffers. This long-term bit rate variation is one of the biggest

challenges in VBR video transmission.

Traditional IP traffic, such as that generated by file transfers and email communication,

is supported by best-effort service that does not have guaranteed delay, transfer rate, or

other QoS characteristics. To facilitate transmission of real-time multimedia content across

the Internet, several new protocols have been proposed in recent years. Among them, the

Resource Reservation Protocol (RSVP) is a network control protocol that allows Internet

applications to obtain a certain QoS for their corresponding data flows [41, 42]. Within
1The contribution of audio to the overall bit rate is largely ignored, as video is the dominant source of

data.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 44

this protocol, a route reservation is created and periodically updated in two stages: the

sender multicasts PATH messages containing traffic characteristics, then RESV messages

containing resource reservation requests are forwarded from the receiver along a reverse

path. In the context of QoS-guaranteed network communication, it is crucial to quantify

the video traffic characteristics as precisely as possible, independent of which protocol is

being used. Such quantification generally involves prediction of future and/or long-term

traffic patterns because the frequency of reservation adjustment is limited in practice.

For the efficient transmission of VBR video, we study two issues: (1) at which points

the bandwidth should be renegotiated, and (2) how much bandwidth to ask for at any given

point.

Conventional approaches renegotiate resources according to changes in bitstream level

statistics [43]. The relationship between past and future traffic was parametrically modeled

in work such as that by Chong, Izquierdo, and references therein [44, 45]. Doulamis, et al.,

derived separate models for I, P, and B frames, altering them based on a model of “activity”

in a GOP [46]. More clearly content-based approaches have been introduced, motivated by

the high correlation between long-term traffic characteristics and video content [47, 48].

We find that while content is a major factor in determining the bandwidth, content alone

may not be sufficient for predicting future traffic and in estimating how much bandwidth

to request.

A content-based prediction approach has been proposed by Bocheck, et al., consisting

of training and testing stages [48]. In the training stage, content features are quantized into

a small number of levels (e.g., slow/medium/fast motion), and every possible combination

of significant features is labeled as one content class for which the typical traffic pattern

is computed. After training, the content class for each shot in the test video is identified

by extracting the same features, and the typical traffic pattern of the class is used as

the predicted traffic for that shot. Unfortunately, this specific prediction structure via

classification can only feasibly incorporate a limited number of coarsely quantized features;

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 45

each feature is weighted equally, rather than by its relevance to traffic. In addition, the

training is only applicable to a single compressor and parameter set: content alone is not

useful for analyzing differently-encoded versions of the same stream. Finally, some useful

and readily-available information, such as the exact bandwidth statistics of the video in the

observation periods, are not incorporated.

3.1 Bandwidth Renegotiation Points

Whenever the traffic characteristics of the transmitted VBR stream change dramatically,

the requested bandwidth should be renegotiated. A tradeoff in overhead must be consid-

ered, however: if the renegotiation happens too often (say, every frame), the request and

negotiation packets themselves will be a significant source of traffic. In addition, the rene-

gotiation process likely involves delay itself, and is limited by the available computational

power. Renegotiating too infrequently leads to dropped packets or frames, poorer overall

network utilization, and possibly wasted expense, if bandwidth is not a free commodity.

The on-line determination of bandwidth renegotiation points in VBR video generally

falls into three categories: deterministic, traffic-based, and content-based. Deterministically

setting the renegotiation points is the simplest method: bandwidth requests are made

every n frames, where n is an empirically determined balance between request overhead

and correlation of frame bit rates. Traffic-based renegotiation occurs when the stream

violates a previously negotiated bandwidth request, or when utilization drops below some

level. Although traffic-based renegotiation tracks the real bandwidth more closely, a single

complex frame can cause the requested bandwidth to remain elevated for some time. A

more “natural” set of renegotiation points is the set of shot boundaries. By studying the

bits used per frame in VBR video, one sees that the most dramatic changes occur at the

beginning of new camera shots [48]. Within a single shot, the traffic characteristics are

relatively constant2.
2If a shot has a sudden change in content features, the change can be considered a boundary as far as

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 46

There exist many approaches to finding shot boundaries in the compressed domain.

For simplicity, we consider only abrupt transitions and adopt Yeo’s compressed-domain

cut detector [16]. This method uses a windowed relative threshold on the sum of absolute

DC-frame pixel differences,

dk =
∑
i,j

|xk(i, j)− xk−1(i, j)| , (3.1)

and allows for fast, on-line computation of renegotiation points. The gradual transition

detectors described in Chapter 2 can be used to augment the cut detector.

3.2 Traffic Prediction per Interval

After selecting renegotiation points, the next step is to determine how much bandwidth to

request for each interval without introducing significant delay. For natural renegotiation

points such as shot boundaries, past shots’ traffic generally cannot help in determining

a new request, as the traffic pattern has changed. Exact traffic information for the new

video shot can be obtained by measuring every frame between the current and the next

renegotiation points, using this as a basis for the resource request. This is possible in

an offline situation where the future video is available, but is not suitable for real-time

applications because significant delay will be introduced (particularly if the shots are long).

With the requirement of online processing in mind, one can predict the traffic for the entire

shot based on an observation of the first few frames. This is illustrated in Figure 3.1, where

the shaded areas indicate observation periods. Renegotiation is performed after the short-

term observation, and if granted, the video will be transmitted using the newly reserved

bandwidth. If the request is not granted, the source could attempt to transcode the video

in order to fit a smaller bandwidth for the single shot; otherwise, the shot is dropped.

Note that the observations will inevitably introduce some delay in renegotiation, but the

video itself may be transmitted without delay, as in Figure 3.1(a). With this approach,

renegotiation is concerned. For simplicity, we will ignore such intra-shot “boundaries.”

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 47

video source

intervals
observation

takes effect
renegotiation

takes effect
renegotiation

renegotiation renegotiation

shot boundaryshot boundary

new shot;
old reservation

observation
delay

without delay
transmission(a)

transmission
with delay

(b)

Figure 3.1: Traffic prediction scenarios with different delays.

unexpected bursty traffic during the shaded periods can only be accommodated by adding

extra capacity to network buffers. For applications tolerating a short-delay, the video may

be transmitted with a t-second delay as in Figure 3.1(b), so that the video traffic is always

within the bounds of the negotiated agreement. While our approach can be applied to both

delayed and non-delayed transmission, we shall focus on the better-performing delayed

transmission case.

Although the problem of predicting future traffic based on short-term observations may

be handled by parametric modeling, it is not easy to come up with a simple and effective

parametric model when incorporating content features. For this reason, we use a neural

network to accomplish the prediction task, as shown in Figure 3.2. The input to the network

consists of selected content features and traffic descriptors from the observation period. The

outputs are the principal components of the D-BIND traffic descriptor for the entire shot,

as discussed in the next section. We adopt a multilayer-perceptron network with a single

hidden layer and apply the back-propagation approach in supervised training [49].

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 48

video source

intervals
observation

shot boundaryshot boundary

predicted bandwidth
(D-BIND descriptor)

content
features

observed
traffic features

traffic prediction
neural network

Figure 3.2: Neural network based traffic prediction, using both short-term traffic observa-
tions and content features to determine the entire shot’s traffic patterns.

3.2.1 Media Stream Traffic Descriptors

In any traffic management scheme, a method is needed to quantify bandwidth requirements;

many traffic descriptors have been proposed in the literature. Among them, peak rate

and average rate are two very simple ones, but they do not capture traffic patterns over

different time scales (a feature needed for VBR transmission). To overcome this problem,

Knightly, et al., proposed the D-BIND descriptor for deterministic service, which provides

a worst-case performance guarantee [50]. D-BIND, or the deterministic bounding interval

dependent model, is essentially a vector containing the maximum allowed arrival rate for

various intervals. It is defined as follows: Let A[τ, τ + t] be the cumulative number of bits

arriving during the t-length interval beginning at time τ . The tightest bound over all time,

called the “empirical envelope,” is

B∗(t) = supA[τ, τ + t] (3.2)

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 49

A piecewise-linear bounding function BWT
is then constructed from B∗(t), where WT =

{(qk, tk)|k = 1, 2, ..., p} is the vector of bit arrival and interval pairs. Given a set of interval

lengths tk, the tightest such bounding function is denoted B∗WT
. The D-BIND descriptor

is usually expressed in terms of arrival rates, RT = {(rk, tk)|k = 1, 2, . . . , p}, where rk =

qk/tk. This descriptor captures both the short-term burstiness and the long-term traffic

characteristics of a video segment, while being relatively simple to implement in admission

control and policing.

3.2.2 Content Features

Image complexity and motion have been suggested by Bocheck, et al., as significant corre-

lates to video traffic [48]. Keeping in mind the requirement of efficient online processing, we

extract fourteen features related to complexity and motion by processing the video in the

compressed domain. This set of content features is likely more than necessary, but we will

rely on the selection methods in the following sections to weed out redundant or irrelevant

features. Other features could be incorporated as well, if they have a high relevance to

traffic.

The spatial “complexity” of the intracoded (I) frames is intuitively the dominant factor

determining a stream’s resource requirements, because the number of bits required to encode

the frame is directly dependent on the energy compaction provided by the DCT and the

compaction is less dense in blocks with edges or complex textures. In order to estimate

complexity, we compute the weighted sum of the magnitudes of AC coefficients in the frame

(DC coefficients are differentially encoded, so high DC magnitudes do not exact much

penalty in traffic). Any weighting pattern giving more weight to higher-frequency DCT

coefficients could be used; we chose to weight coefficients according to the sum of their

frequencies in each dimension (the L1 “distance” from the DC coefficient).

Motion vector magnitudes can dramatically affect the resources required by predicted (P

and B) frames; for simplicity we shall consider only the forward predicted frames. Higher

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 50

magnitudes mean more intense motion, and consequently more correction will likely be

needed in the residue frames after motion compensation. Motion direction, for the most

part, is irrelevant to traffic. We compute the mean motion vector magnitude, for the whole

frame, as follows:

‖mv‖ =
1
M

∑
i,j

‖mk(i, j)‖2 (3.3)

where M is the number of macroblocks in the video frame and mk(i, j) is frame k’s forward

motion vector for the macroblock (i, j). In order to identify segments with strong motion

in part of the frame, but not the entire frame, we also compute the value of (3.3) for each

of four spatial quadrants.

The coding efficiency of predicted frames can also be measured by counting the number of

intracoded blocks in the frame; areas that could not be adequately predicted from previous

frames must be encoded again, at some expense in bandwidth. The fraction of P frame

macroblocks that must be intracoded, instead of intercoded, therefore is another candidate

feature.

Motion compensation is less efficient if the object or frame motion is not “simple”,

meaning that more correction must be applied in the residue frames if different macroblocks’

motion vectors point in radically different directions. We measure the motion complexity in

a number of ways, and rely on the feature selection process to find the ones most important

to traffic prediction. First, we form a simple directional histogram of the motion vectors, in

which each intercoded macroblock’s motion vector is classified into five bins: up, down, left,

right, or “zero,” according to the dominant axis of the vector. Complex motion corresponds

to having roughly equal values in each bin, so we use the variance over these five bins as a

candidate feature. An alternative way of measuring the coverage of the motion prediction

over the new frame is to compute the spatial variance of the motion vector magnitudes:

var (‖mk‖) =
1
M

∑
i,j

‖mk(i, j)‖22 −

 1
M

∑
i,j

‖mk(i, j)‖2

2

(3.4)

In addition, the spatial variances of the x and y motion vector components, as well as

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 51

their cross covariance, are calculated:

var (mkx) =
1
M

∑
i,j

m2
kx(i, j)−

 1
M

∑
i,j

mkx(i, j)

2

(3.5)

var
(
mky

)
=

1
M

∑
i,j

m2
ky(i, j)−

 1
M

∑
i,j

mky(i, j)

2

(3.6)

cov
(
mkx ,mky

)
=

1
M

∑
i,j

mkx(i, j)mky(i, j)

− 1
M2

∑
i,j

mkx(i, j)
∑
i,j

mky(i, j) (3.7)

Finally, as we are only able to observe the very beginning of each new camera shot, the

ways in which motion might change throughout the shot are important to estimate. Even

if the motion magnitude is small in the first few frames, it can be large later in the shot,

requiring more bandwidth to represent. To make this effect more manageable, we measure

the object and frame acceleration in two ways. First, motion vectors from adjacent predicted

frames are subtracted to form acceleration vectors, of which we take the mean magnitude:

‖accel‖ =
1
M

∑
i,j

‖mk(i, j)−mk−1(i, j)‖2 (3.8)

A high value for this mean indicates that the motion in the video is not simple, and that

the residue frames will become increasingly complex (thus requiring more bits). The second

candidate acceleration feature places greater emphasis on changes in speed, rather than

changes in direction:

∆ ‖m‖ =
1
M

∑
i,j

(‖mk(i, j)‖2 − ‖mk−1(i, j)‖2) (3.9)

The eighteen candidate predictor inputs (fourteen content plus four traffic) are summa-

rized in Table 3.1. None of the fourteen content features requires full decompression of the

VBR stream to compute; in MPEG-1 and 2, the amount of computation required is quite

low.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 52

Feature Description
1 I frame complexity
2 Mean MV magnitude
3 Variance of MV directional histogram
4 Fraction of intracoded MB’s
5 Mean magnitude of accel vectors
6 Mean change in MV magnitudes
7 Mean MV magnitude, upper-left
8 Mean MV magnitude, upper-right
9 Mean MV magnitude, lower-left
10 Mean MV magnitude, lower-right
11 Variance of MV x components
12 Variance of MV y components
13 Covariance of MV x and y components
14 Variance of MV magnitudes
15 Short-term D-BIND r1 (1 frame)
16 Short-term D-BIND r2 (2 frames)
17 Short-term D-BIND r3 (3 frames)
18 Short-term D-BIND r4 (4 frames)

Table 3.1: Candidate content and traffic features for use in per-interval traffic prediction.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 53

3.2.3 Feature Selection for Traffic Prediction

There is, however, significant redundancy in the eighteen features of Table 3.1, and not all

may be highly relevant to traffic prediction. The importance of selecting the relevant subset

from the original feature set is closely related to the “curse of dimensionality” problem in

function approximation, where sample data points become increasingly sparse when the

dimensionality of the function domain increases, such that the finite set of samples may not

be adequate for characterizing the original mapping [51]. In addition, the computational

requirements are usually greater for implementing a high-dimensional mapping. To alleviate

these problems, we reduce the dimensionality of the input domain by choosing a relevant

subset of features from the original set.

Traffic statistics have a nonlinear dependence on short-term content features, leading

us to utilize the sequential forward selection (SFS) procedure, combined with an easily-

trained general regression neural network (GRNN)[52, 53, 54]. The SFS/GRNN feature

selection method described in the following sections was developed by Dr. Hau-San Wong.

Dr. Wong’s results are summarized here for completeness; a more detailed development is

available in [55] and [56].

Unlike typical neural network structures which require iterative training, the GRNN

model parameters can be directly determined from the training data. Such one-pass training

allows for rapid evaluation of individual feature subsets, but is in general sub-optimal. As

the number of feature inputs increases, the approximation error becomes more and more

significant, and as we shall see, an alternative approach is necessary to augment the feature

set beyond a certain point.

Sequential Forward Selection (SFS)

The sequential forward selection (SFS) procedure provides for the incremental construction

of salient feature subsets [52]. Given an original set F of N features, we define a sequence

of subsets F ′m, m = 0, . . . , N , where each set contains m features. At each iteration, F ′m+1

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 54

is the union of F ′m with a single (remaining) feature that is most relevant by some measure.

In our case, we are constructing feature subsets to aid in traffic prediction, so a natural

relevance metric, DF ′m , is the prediction mean square error

DF ′m =
1
P

P∑
p=1

‖yp − g(xF ′m,p)‖
2 (3.10)

where g(·) is the GRNN-based predictor described in the next section and P is the number

of elements in the training data set. DF ′1
is first calculated, using scalar prediction inputs,

for each single feature. The feature yielding the minimum DF ′1
is chosen to construct

the final F ′1. DF ′2
is then calculated for of the remaining N − 1 features, combining the

test feature with F ′1, and the test feature minimizing this MSE is used to form the final

F ′2 = fminimum MSE ∪ F
′
1. In this manner, we construct a final set of nested feature

subsets, F ′1 ⊂ F ′2 ⊂ . . . ⊂ F ′N . We can then select the smallest subset that meets a desired

MSE criteria.

SFS via the General Regression Neural Network (GRNN)

In order to calculate the MSE values, DF ′m , required by SFS, a sub-optimal—but simple

to train—predictor is used. The general regression neural network (GRNN) is a two-layer

special case of the radial basis function (RBF) neural network [53, 54]. The first layer

applies Gaussian transfer functions to the input values, and the second is a simple linear

summation layer. Unlike typical RBF networks, however, the centers and widths of the

Gaussians in the GRNN are deterministic functions of the training data.

We begin with a set of P training data samples, (xp,yp), where p = 1, . . . , P , each xp is

an m-dimensional input vector, and each yp is the corresponding result of the function to

be approximated. Each sample point is associated with a multivariate Gaussian kernel in

the first network layer, where vector xp is assigned to the center of the kernel. The output

of the p-th first-layer node is

βp = exp

[
−(x− xp)T (x− xp)

2σ2

]
, p = 1, . . . , P, (3.11)

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 55

for an arbitrary input vector x, where σ is a user-specified smoothing parameter. The

network output is then the weighted sum

y =
P∑
p=1

αpyp, (3.12)

where the weights αp are

αp =
βp∑P
p=1 βp

. (3.13)

Results of SFS/GRNN Feature Selection

We now apply the SFS/GRNN feature selection technique to the eighteen candidate features

in Table 3.1. As the GRNN requires separate test and data sets, we adopt the leave-one-

out approach for evaluating the approximation errors. This approach, a special case of

cross validation, uses the average error obtained by training with each possible set of P − 1

samples and testing with the remaining one [51].

13175 frames of digitized cable television video, encoded in VBR MPEG-1 at an average

bit rate of 2.1 Mbps, were used for the experiments. The method of Section 3.1 identified 177

intervals in the video, and short-term feature observations were computed for each interval

as described in Section 3.2.2. Figure 3.3 shows the accumulated prediction error at each

SFS iteration, as well as the feature subsets used. Beyond F ′6, which consists of features

{1, 6, 15, 16, 17, 18}, the error beings to increase. This is likely due to the suboptimal nature

of the GRNN, particularly in high dimensional spaces; the number of training samples forces

the GRNN kernels to only sparsely populate the increasingly large feature space. The

upswing makes it clear that feature indices near and beyond the minimum do not reflect

their actual order of relevance to prediction, and that an alternative approach is needed to

select sets of more than 6 features.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of features used

M
S

E

Feature Set Features Feature Set Features Feature Set Features
F ′1 15 F ′7 3 ∪ F ′6 F ′13 4 ∪ F ′12

F ′2 18 ∪ F ′1 F ′8 5 ∪ F ′7 F ′14 2 ∪ F ′13

F ′3 17 ∪ F ′2 F ′9 7 ∪ F ′8 F ′15 10 ∪ F ′14

F ′4 16 ∪ F ′3 F ′10 8 ∪ F ′9 F ′16 9 ∪ F ′15

F ′5 1 ∪ F ′4 F ′11 12 ∪ F ′10 F ′17 11 ∪ F ′16

F ′6 6 ∪ F ′5 F ′12 13 ∪ F ′11 F ′18 14 ∪ F ′17

Figure 3.3: Cumulative error plot for SFS/GRNN feature selection; the table shows which
features are included after each SFS step (cf. Table 3.1). Minimum GRNN MSE is achieved
after selecting six features, as indicated by an arrow. The increasingly suboptimal nature
of the GRNN in high dimensional spaces means that the feature order near and beyond the
minimum may not reflect their actual relevance in prediction.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 57

3.2.4 Consistency-Based Feature Selection

As the SFS/GRNN method cannot completely characterize the set of relevant features in

the content-to-traffic mapping, we adopt a consistency-based approach as a complementary

selection mechanism to evaluate the relevance of content features. Consistency measures

were originally used to select features which are most effective in preserving class separa-

bility [57]. In the case of traffic prediction, this measure was used by Bocheck, et al., to

evaluate the relevancy of content features to video traffic [48]. Their work classifies content

feature values into clusters (for example, high, medium, and low motion), implicitly impos-

ing a clustering on traffic by the empirical content-to-traffic mapping. Instead, we propose

to cluster the traffic descriptors directly, then look for the subset of feature space that most

accurately preserves this clustering in the reverse mapping.

In the first step, video shots are classified into k traffic clusters based on the D-BIND

traffic descriptor (Section 3.2.1). Classification can be done by K-mean, E-M, or other

algorithms. A consistency measure C for each feature individually is then computed [48]:

C =
mean inter-class distance
mean intra-class distance

(3.14)

where the distances are in the space of the features under consideration. Highly relevant

features will have large C values, as such features induce small intra-class distances and

large inter-class distances among traffic clusters in feature space.

We apply K-mean clustering to classify video shots’ traffic into 4 clusters. Using the

first two principal components of the D-BIND descriptor of each shot, the traffic clusters

are shown in Figure 3.4. Each cluster reflects a different level of complexity and action. The

shots in rightmost cluster typically contain fast motion along with considerable complexity,

for example. We then compute each content feature’s consistency measure according to

equation (3.14), with the sorted results shown in Figure 3.5. I frame complexity (feature

1) has the highest consistency measure of all content features, which is the same result as

achieved by the SFS/GRNN approach in Section 3.2.3. Similarly, we find that the average

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 58

2 2.5 3 3.5 4 4.5 5 5.5 x 10
5-1

-0.5

0

0.5

1
x 10

5

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

1 2 3

4

Figure 3.4: Four traffic classes derived by K-mean clustering on the two principal compo-
nents of D-BIND, the first step in consistency-based feature selection.

magnitude of P frame “acceleration” (feature 5) has the second highest consistency. We also

notice that features 7–10, the regional motion magnitudes, have high correlation with feature

2, the global motion magnitude, and all have similar consistency. To reduce the redundancy

in the selected feature set and the prediction complexity, we exclude the regional motion

features, resulting in four highly consistent content features: {1, 5, 2, 13}.

It should be pointed out that the consistency-based approach assumes features are uncor-

related and only considers features that are related with the traffic descriptor in a monotonic

way as beneficial. For this class of features, a large distance in traffic space implies a large

distance in feature values. Although these assumptions simplify the problem and provide

a feasible way to evaluate a feature relevancy, more complicated relations between features

and traffic are not captured by this approach.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 59

1 5 10 2 13 8 9 11 7 14 12 3 4 6
1

1.5

2

2.5

3

3.5

4

feature index

c
o

n
s
is

te
n

c
y
 m

e
a

s
u

re

Figure 3.5: Sorted consistency measures C for each candidate content feature, when used
individually.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 60

temporal
segmentation

extract bit
stream statistics

compressed-domain
processing

extract content
features

classify traffic
patterns

feature
evaluation

neural network
traffic predictor
for entire shot

compute traffic
descriptors

principal
comp. analysis

renegotiation points requested bandwidth

stream
video

Figure 3.6: Overall structure of the VBR resource predictor; dashed lines represent connec-
tions only made during the training phase.

3.3 Experimental Results

We use D-BIND descriptors and deterministic (conservative) service in our tests, though

the proposed framework is applicable to others policies. Fixing [t1, ..., tp], D-BIND can be

described by a vector [r1, ..., rp]. r1 through r4 of the short-term observed traffic, corre-

sponding to intervals of 1 to 4 frames respectively, are the remaining inputs to our neural

network (Figure 3.2). When describing the entire shot, the dimensionality of D-BIND is

large, increasing the prediction complexity. Such an increase is rather wasteful as there is

some redundancy in D-BIND (rk approaches the mean bit rate for large k). In order to

lessen redundancy and reduce prediction complexity, we apply principal component analy-

sis (PCA) to D-BIND and use the first L principal components as traffic descriptors. The

neural network will then predict these L values. The overall system structure is illustrated

in Figure 3.6. Some prelminary results with this framework were presented in [58].

3.3.1 Prediction MSE

We first demonstrate the performance of our proposed framework by evaluating the pre-

diction mean squared error (MSE), a commonly used criterion. For the traffic prediction

problem, the overestimation of shot D-BIND descriptors could lower network utilization,

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 61

and underestimation could degrade QoS or even cause network buffer overflow. Our exper-

iments were performed on the same 13175-frame MPEG-1 VBR video mentioned above; it

consisted of segments from a fast-action documentary and a television drama.

To verify the selection results of the SFS/GRNN approach, the feature subset F ′6 =

{1, 6, 4-dim D-BIND}= {1, 6, 15, 16, 17, 18} (Section 3.2.3) is used for training a multilayer

perceptron to predict the long-term traffic statistics. Among the 177 shots extracted from

the video sequences, the first 50 shots are used as training samples for the network, and

the next 127 shots are used as test data. We have listed the prediction mean square error

in normalized units3 for different numbers of hidden nodes in Table 3.2. For the purpose

of comparison, we have also included the prediction results by randomly choosing 2 sets of

6 features from the original 18. We can observe that the 6 features selected by SFS and

GRNN achieve the smallest error in each case. In addition, we also notice that increasing the

number of hidden nodes from 10 to 20 does not significantly improve the prediction results,

and for some particular feature combinations the prediction error even increases for a large

hidden layer, indicating the possibility of overfitting. As all the D-BIND features rank close

to the top of the feature list, it is reasonable to suggest that most of the useful information

for predicting the future traffic is already embedded in these short-term statistics. To

confirm this, we have also included the prediction results using the 4 short-term D-BIND

features only. We observe that the resulting errors are only slightly greater than those of the

original selected subset F ′6, indicating that these short-term features are the most essential

for predicting the long term network traffic.

From these results, we can conclude that the SFS/GRNN selection mechanism is ca-

pable of identifying the most important features—the short-term D-BIND statistics—for

the current prediction problem. On the other hand, we find that the addition of content

features to the D-BIND subset serves to slightly improve the prediction result. That only
3Note that the D-BIND principal values are on the order of 105 bits per frame, and the prediction MSE

of these principal values is on the order of 1010.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 62

number of MSE MSEFeature Subset
hidden nodes (1st PCA) (1st and 2nd PCA)

F ′6 10 0.0238 0.0277
D-BIND 10 0.0247 0.0281

Random Set 1 10 0.0559 0.0695
Random Set 2 10 0.0426 0.0545

F ′6 20 0.0232 0.0268
D-BIND 20 0.0244 0.0279

Random Set 1 20 0.0579 0.0719
Random Set 2 20 0.0488 0.0617

Table 3.2: MSE traffic prediction results using content/traffic features selected by
SFS/GRNN, traffic features only, and two random feature sets.

Feature Subset MSE (1st PCA) MSE (1st and 2nd PCA)
F ′6 (SFS/GRNN) 0.0232 0.0268
F8 (combined) 0.0215 0.0257

Table 3.3: MSE traffic prediction results, comparing features selected by SFS/GRNN and
by the combined SFS/GRNN/consistency approach.

two of the 14 content features are included in the selected subset is due to our previ-

ous decision not to adopt those content features beyond the GRNN minimum-error point.

Due to the GRNN dimensionality issues explained above, we have employed consistency-

based selection to augment the SFS/GRNN process. To demonstrate the improvement,

we list the prediction MSE’s of the feature sets F ′6 of the SFS/GRNN approach and

F8 = {1, 2, 5, 13, 4-dim D-BIND} of the combined approach (Section 3.2.4) in Table 3.3,

where the number of hidden nodes is 20. The prediction MSE using F8, selected by the

combined approach, is smaller than that of F ′6, selected by SFS/GRNN alone, especially for

predicting the most significant component of the D-BIND descriptor. This confirms that

incorporating the alternative selection approach can enhance prediction performance.

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 63

Finally, using feature set F8 selected by the combined approach, we compared the predic-

tion MSE under four different strategies. With respect to renegotiation points, we consider:

(A) using equal-length request intervals (one request every 75 frames, which is the average

shot length), and (B) using shot boundaries from temporal segmentation. We also consider

three different neural network inputs for traffic prediction: (I) the four content features

{1, 2, 5, 13} of the observed video, (II) the four short-term D-BIND features {15, 16, 17, 18}

of the observed video, and (III) both of the above. Two sets of comparisons are shown

in Figure 3.7. Comparing the two leftmost columns, (A-III) and (B-III), we observe that

(B-III) gives much smaller MSE, meaning that content-based renegotiation points are by far

superior to non-content-based ones. Comparing the three rightmost columns, we observe

that short-term traffic (B-II) gives better prediction performance than content features (B-

I) alone. In addition, we find again that using both content and short-term bandwidth

of observed video (B-III) is only marginally better than using short-term bandwidth alone

(B-II). This implies that most of the useful information in content features for predicting

traffic is already inherent in the short-term bandwidth statistics.

3.3.2 Trace-Driven Link Utilization

We compare our proposed approach with a static peak-rate allocation and a bitstream-level

dynamic scheme to demonstrate the improvement of network link utilization achievable.

The R-VBR scheme, a heuristic dynamic renegotiation algorithm using D-BIND descrip-

tors, was proposed by Zhang, et al., and claims significant improvement over static peak

rate allocation [43]. It raises the reserved bandwidth (described by D-BIND) by a factor α

when the real bandwidth exceeds the reserved resources, and lowers it by a factor β when

the real bandwidth remains below the reserved amount for K frames. The average R-VBR

renegotiation frequency is determined by the triplet (α, β,K). In contrast, our proposed

scheme uses the shot boundaries, obtained from content-based temporal segmentation, as

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 64

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A-III B-III B-I B-II B-III

0.070

0.080

0.024
0.028

0.046

0.059

0.027
0.031

0.024
0.028M

S
E

 (
x1

0
)10

MSE in 1st D-BIND P.C.
MSE in 1st two D-BIND P.C.'s

Figure 3.7: Traffic prediction MSE using (A) equal-length request intervals and (B) shot-
boundary derived intervals, combined with (I) content, (II) short-term traffic, and (III)
combined content/traffic-based predictors. (D-BIND values are on the order of 105 bits.)

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 65

renegotiation points, and a neural network traffic predictor to determine how much band-

width to ask for at each point. For the 177-shot video used in our experiments, the full

D-BIND vector of each entire shot is estimated from the two principal components which

are the outputs of the neural network traffic predictor. These predicted D-BIND descriptors

are the values used in bandwidth renegotiation.

Link utilization is obtained by trace-driven simulation, similar to that described in [48].

Multiple video sources, based on the above mentioned sample video but with random start-

ing points, are multiplexed into a T3 line (link speed c = 45 Mbps). For simplicity, the

simulation blocks a source when its resource request is rejected, and a new request is gen-

erated at the next renegotiation point. More sophisticated admission control is certainly

possible, a subject for future research. A network buffer with maximum capacity Q and

first-come-first-served queuing policy is used to smooth out the bursty traffic. When a

renegotiation request is received from the n-th source, the worst case buffer occupancy is

computed:

QW = QC + max

0, max
1≤k≤d

tk ·
rk(n)− c+

∑
i6=n

ai · rk(i)


 , (3.15)

where QC is the current buffer occupancy, d is the dimension of D-BIND descriptor, rk(i) is

the kth D-BIND component of the ith source, and ai is set to 1 if the ith source is admitted

and 0 otherwise. The requested bandwidth is granted only if QW ≤ Q. Given a bound on

the per-stream rejection probability (1% in our simulation), link utilization is defined as:

u =
max number of admitted sources

c/ravg
, (3.16)

where ravg is the average rate of the entire video sequence. The simulation results of

utilization versus buffer capacity are shown in Figure 3.8. With three parameter settings,

(α = 1.3, β = 0.7,K = 30), (α = 1.3, β = 0.7,K = 60), and (α = 1.4, β = 0.7,K = 90),

the R-VBR scheme generates requests at average rates of 0.81, 1.54, and 2.32 seconds,

respectively. The corresponding utilizations are shown as dashed curves. The bottom

CHAPTER 3. CONTENT ANALYSIS FOR TRAFFIC PREDICTION 66

0 50 100 150 200 250 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

buffer size per sequence (kilobits)

to
ta

l c
ha

nn
el

 u
til

iz
at

io
n

(a
ll

se
qu

en
ce

s)

Proposed Scheme (using 2 P.C.)
RVBR [α=1.3, β=0.7, K=30]
RVBR [α=1.3, β=0.7, K=60]
RVBR [α=1.4, β=0.7, K=90]
Peak Rate Allocation (no buffer)

Figure 3.8: Network utilization for multiplexed sources, computed by trace-driven simula-
tion, for our proposed resource allocation scheme, peak rate allocation, and R-VBR.

straight line shows the utilization if the peak bandwidth were allocated to each sequence,

with no buffering to smooth the data. (A utilization of 1.0 would correspond to ravg

allocation per stream with an infinite buffer and corresponding unbounded delay.) The

upper solid curve is the utilization of our proposed scheme, which renegotiates once every

2.48 seconds on average. The figure shows that our proposed scheme obtains a much higher

link utilization than peak-rate allocation. Furthermore, our proposal outperforms the R-

VBR scheme of similar renegotiation frequency by 18%, as well as by 9% against R-VBR

with triple the renegotiation frequency.

Chapter 4

Multimodal Processing

While the segmentation and analysis of the video component of multimedia streams are

important, significant information is contained in the accompanying audio tracks. Indeed,

it is often possible to understand the plot and organization of a multimedia presentation

by listening only to the audio track; the video track alone is generally more difficult to

understand. We investigate here both the audio track of multimedia streams as well as

how to meaningfully compare statistics extracted from the audio and video tracks. This

information will be incorporated in the multimedia temporal analysis techniques presented

in later chapters.

In terms of segmentation, we concentrate on speaker changes as the dominant transitions

to detect. Most audio sequences also contain music, background sounds, and other effects;

for speaker segmentation to be accurate at all, one needs to either filter out these sounds

(difficult in general) or separate segments containing the sounds before considering speaker

changes. In keeping with our goal of generality, we prefer audio segmentation and processing

tools that do not require prior training to known speakers or sound sources. In speech

processing parlance, we require an “open-set text-independent” speaker segmentor.

67

CHAPTER 4. MULTIMODAL PROCESSING 68

4.1 Existing Audio/Video Segmentation and

Analysis Techniques

Work in the area of speaker change detection and speaker identification long predates video

processing research. Given the commonly-accepted filtered excitation model of speech, the

time-average mel cepstrum (spectrum of log-magnitude spectrum) is generally agreed to be

the best available statistic for separating speakers [59, 60]. The argument is that, as the

convolution of the excitation sequence—which distinguishes speakers—with the vocal tract

filter is decomposed into a sum in the cepstral domain, the effects of the filter (i.e., what is

actually being said) will be diminished by the time average. The accuracy of this method is

hampered, however, by large intra-speaker variation in cepstral coefficients, as well as the

fact that humans also use the amount of noise in the voice, the overall vocal-tract shape, and

possibly other attributes as additional features in discriminating speakers [61]. In addition,

non-voiced segments must be eliminated before computing cepstra, as fricatives and stops

do not conform nicely to the filtered excitation speech model. (Ignoring speakers per se,

more general audio classification can be done via cepstral coefficients as well [62, 63].)

Shridhar, et al., published an early comparison study of distance metrics on cepstral co-

efficients (among other features) using two-second utterances parameterized at 50 Hz [64].

Gish, et al., computed a likelihood ratio using multivariate Gaussian assumptions on cepstral

coefficients, reporting a classification error rate of 10 percent on pre-segmented air-traffic

controller audio [65, 66]. Their group also looked at the issue of determining segment bound-

aries [67]. Using HMM-based phoneme-spotting techniques, Wyse and Smoliar improved

on the technique by incorporating only vowel and semi-vowel sounds in the cepstral compu-

tation [68]. Nam, et al., used a similar phoneme-based method on audio, combining it with

video shot detection and clustering [69]. More recent work includes that of Mori and Naka-

gawa, who used VQ distortion measures on averaged cepstral coefficients of broadcast news

speech, where VQ models for well-known anchors and announcers were pre-trained [70].

CHAPTER 4. MULTIMODAL PROCESSING 69

Siegler, et al., used cepstral distance metrics to segment and classify speakers, with 64%

boundary detection probability, but 60% of the detected boundaries were false alarms; given

correct boundaries, the clustering error rate was much lower [71].

Discriminators of speech versus music have been developed using a myriad of extracted

statistics as feature vectors; Scheirer gives a good summary of the features used, which

include the spectral centroid, time-based spectral difference, spectral rolloff points, zero

crossing rate, and 4 Hz modulation energy [72]. Tzanetakis and Cook discuss ways to extract

some of this information directly from MPEG-compressed audio streams [73]. Generic audio

segmentors have also been built using these features, often combined with trained classifiers

to detect certain types of audio (such as ads, “violence,” etc.)[74]–[79].

In the last few years, video researchers have begun concentrating on audio as an addi-

tional source of information. Much of this work has concentrated on genre-specific heuristic

combinations video and audio information. Chang, et al., combined audio cheering de-

tection and word-spotting with image edge detection and football field models to extract

touchdown segments [80]. Another simple but commonly-used technique is to determine

where audio and video boundaries coincide, as these locations are likely more significant

transitions [81, 82, 83]. Liu and Wang combine speaker change information with face detec-

tion and clustering to form “cast lists” for media streams [84]. Foote, et al., used audio and

video boundary statistics for high-speed browsing of video [85]. A number of researchers

have combined techniques such as face detection, shot boundaries, pre-trained speaker detec-

tion, and closed-captioning information to classify news, ads, etc., and make other inferences

about “content” [86, 9, 87, 88].

From a more abstract point of view, surveys by Minami and Wactlar explored the

effects of the director’s “intent” on statistical features of audio and video streams [89, 90].

Finally, Pan viewed the combination of audio and video statistics and decisions as a form

of information fusion [91].

CHAPTER 4. MULTIMODAL PROCESSING 70

4.2 Speaker Segmentation and Distance Metrics

Despite the large quantity of previous investigation into speaker segmentation issues, few

authors have adequately dealt with problem of segmenting a continuous audio stream into

different speakers in a text-independent manner, when no previous training is available.

We have tried a number of methods, with limited success. The central problem appears to

be the wide variation of cepstral coefficients within the same speaker’s words; such a large

variance makes it difficult to isolate changes in the underlying distribution.

Our segmentation methods all compute mel-weighted cepstral coefficients at a rate of 100

Hz on 8 kHz-sampled audio, discounting silent and unvoiced (spectrally-flat) time segments1.

Cepstral values are averaged over two non-overlapping blocks of time, then a distance metric

is computed between the cepstral means (in our case, Euclidean, based on the Gaussian

model for cepstral coefficients). We tested two methods of forming the pairs of time blocks:

• Sliding pairs of fixed length blocks, with lengths between 0.5 and 2.0 seconds. As 100

cepstral vectors were calculated per second of audio, we slide the blocks in 0.01 second

increments, using the above-threshold local maxima in distance metrics as indications

of speaker transitions.

• Sliding pairs of blocks, where the first block contains all the cepstral vectors between

the last declared transition and the current time, and the second block was of fixed

length. This is beneficial, as the generally long first blocks help compensate for large

intra-speaker cepstral variations.

Motivated by the phoneme-spotting technique employed by Nam and Wyse to improve

their results, we used CMU’s Sphinx speaker-independent speech recognition engine to

extract phoneme lists from the audio stream [93]. Initially we used the phoneme lists as a
1Just as features such as the spectral median can be computed directly from MPEG-compressed data [73],

we determined that cepstral distances could be estimated directly from the 32 subband scalefactors of MPEG-
1 audio as well [92]. While these estimates are beneficial in keeping with our goal of low computational
complexity, we used traditionally-computed cepstral vectors to prevent estimation errors from degrading
performance.

CHAPTER 4. MULTIMODAL PROCESSING 71

filter to the blocks, so that we would only compute cepstra using the following vowel-based

Sphinx phonemes:

/AA/, /AE/, /AH/, /AO/, /AW/, /AY/, /EH/, /EY/, /IH/,

/IY/, /OW/, /OY/, /UH/, /UW/, /Y/, /+UH+/, and /+UM+/.

As it is more sensible to compare like phonemes, instead of means over a large set, the final

segmentor therefore performs the following2:

1. Construct two blocks, according to the second method above (the first block is variable-

length, the second is fixed).

2. Find the vowel-like (voiced) phonemes within each block.

3. Determine which vowel-like phonemes the two blocks have in common.

4. For each common phoneme, take the (Euclidean) distance between mean cepstral

vectors computed only over that phoneme.

5. Compute the mean of these distances, yielding a “phoneme-aligned” distance between

the two blocks.

This algorithm was tested on a 71-second audio stream from a television sitcom, con-

sisting entirely of a conversation between a man and a woman with little extraneous sound.

80% of the 15 segment boundaries were found to within half a second, but there were 17 false

alarms. When allowing for such inaccuracies as ±0.5 second per boundary, a false alarm

rate of one per 71/17 = 4.176 seconds becomes significant; many of the “detections” may

well have been coincidental. Testing on a 5 minute stream with three participants yielded

similar results: 78.6% detection rate, but with 94 false alarms. (For comparison, Siegler,

whose assumptions are most similar to our own but does not use phoneme information,
2Although we did not implement it as its non-causal nature conflicts with our design goals, a bottom-up

“agglomerative” clustering technique is another alternative here.

CHAPTER 4. MULTIMODAL PROCESSING 72

reported a 64% correct detection rate but 60% of the detections were false alarms [71].)

While these results are respectable given only one other researcher’s work with which to

compare, the dominance of the false alarms makes them nearly useless for the temporal

structure algorithms presented in Chapter 6.

Armed with these observations, the difficulty of the speaker segmentation problem in

continuous audio streams (where there are no other cues, such as dead air in the air traffic

controller case) is clear. The central problem is that the test segments are too short to ade-

quately average out the intra-speaker variations, yet making them longer means that short

segments will be completely missed (and many speech segments on commercial television

are less than 2 seconds long). A number of authors use partial or complete a priori training

of speakers in order to obtain reasonable results; such a technique could be employed here

at the expense of generality and completely automated operation. Alternatively, non-audio

cues, such as video shot boundaries or closed-captioning information, can be used to aid in

segmentation (but neither is a very reliable indicator of speaker changes). What is needed

is an audio statistic that responds more quickly and reliably to changes in speaker, thus not

requiring long-term averages for discrimination.

If one is given the segments a priori, either via manual segmentation or from cues such

as closed-captioning information (when accurate), the distance metrics discussed above

are reasonably good at discriminating segments spoken by the same person from those

spoken by different people. Aligning with the prior work, using simple mel-weighted cepstral

averages—ignoring non-voiced segments—proved to be the best method (in fact, it even

slightly beat out the “phoneme-aligned” distances described above, presumably because it

uses more cepstral data in forming the means). Cepstral vectors in this case are calculated

at 25 Hz, as the assumption of a single speaker makes for more slowly varying statistics.

Figure 4.1 shows the measured distributions of this distance metric where the two segments

in question are from the “same,” “similar,” or “different” speakers (more precise definitions

for these terms will be given in Section 4.4).

CHAPTER 4. MULTIMODAL PROCESSING 73

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

audio segment distance

pd
f

same (1) histogram
similar (2) histogram
different (3) histogram
same (1) model
similar (2) model
different (3) model

Figure 4.1: Empirical distributions for the cepstral mean audio shot distance metric, with
MFCC’s calculated at 25 Hz. Dashed lines are measured histograms, and solid lines repre-
sent models for each distribution, developed in Section 4.4.

CHAPTER 4. MULTIMODAL PROCESSING 74

4.3 Video Shot Distance Metric

Yeung, among others, developed distance metrics for measuring the similarity of two video

shots [3]. These metrics generally involve choosing a “key frame” from each shot, then using

an image-based distance metric between the two key frames. The key frame can simply be

the first or center frame of a shot, or it can be chosen more intelligently through motion

analysis and other techniques [94, 95]. A significant shortcoming, however, is that single key

frames are unable to represent changes that occur in a shot; in many situations, the action

at the end of a long shot has little to do with that at the beginning. Additionally, when

one conceives of a distance between two shots in the same video stream, what is generally

meant is “how similar is the end of the first shot to the beginning of the second?” (This

is not, however, the prime characteristic of good distance metrics for searching through a

temporally unordered shot database.) Two shots should have a low distance value if no

off-camera action would be needed to transition between them in the real world; this is

independent of whether the two had differing amounts of motion, for example.

We therefore develop a simple two-key-frame video shot distance metric. Using the very

first and last frames of a shot as representative key frames is generally unwise, as they

will be susceptible to errors in the shot segmentor (particularly for gradual transitions).

Instead, we use the frames closest to 10% and 90% through the duration of the shot as

the “entering” and “exiting” key frames, Kenter(i) and Kexit(i) for shot i, respectively3.

In our implementation, we use easily-extracted DC-resolution key frames to avoid camera

jitter and noise issues, and we restrict ourselves to I and P frames. To compute the distance

between shots j and k, where k > j, use shot j’s “exiting” key frame and shots k’s “entering”

key frame:

Dj,k = d (Kexit(j),Kenter(k)) . (4.1)
3Techniques that extract multiple key frames per shot, such as [94], may also be used; entering and

exiting key frames are then selected from the set of extracted candidates.

CHAPTER 4. MULTIMODAL PROCESSING 75

d(·, ·) represents an image distance metric; motivated by Yeung’s work and Boreczky’s com-

parison study of image distance metrics for dissolve detection, we use a regional histogram

distance [22]. This method incorporates spatial changes by splitting the image up into a

number of blocks, then computing the intersection of each block’s histogram across the two

images:

d (fj , fk) =
1

Nblocks

Nblocks∑
b=1

 1
Npixels

Nbins∑
h=1

min (Fb,j(h), Fb,k(h))

 , (4.2)

where Fb,j(h) is bin h of frame j’s histogram, only considering pixels from block b.

We found the greatest separation of distance values for subjectively “different” and

“same” or “similar” shots when using a 3×2 array of histogram blocks per image (Nblocks = 6)

and 6 histogram bins per color dimension (R, G, and B). Histograms of distance values for

each of these three classes are shown in Figure 4.2. It’s possible that improvement could

be gained by using non-uniformly-spaced blocks or a different color space, but we have not

pursued those ideas.

(Note that this distance metric might not completely characterize segment pairs in

televised sports events; it is likely that most shots of a football field, for instance, would

elicit a small measured distance. One possible solution in the case of sports is to use a

distance metric more attuned to edge information.)

4.4 Audio/Video Distance Normalization

In order to make meaningful comparisons between audio and video distance metrics, it is

necessary to normalize the distances in such a way that an audio segment distance of d

is perceptually equivalent to a video segment distance of the same value. Simply dividing

both distance metrics by their maximum values is not sufficient, as the perceptual distance

in each case is a nonlinear function of the measured distance. For example, even if both

audio and video distance metrics range from 0 to 1, a video distance of 0.5 might signify

two perceptually “closer” shots than an audio distance of 0.5.

CHAPTER 4. MULTIMODAL PROCESSING 76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

video segment distance

pd
f

same (1) histogram
similar (2) histogram
different (3) histogram
same (1) model
similar (2) model
different (3) model

Figure 4.2: Empirical distributions for the two-key-frame video shot distance metric, with
Nblocks = 6 and 6 bins per histogram dimension. Dashed lines are measured histograms,
and solid lines represent models for each distribution, developed in Section 4.4.

CHAPTER 4. MULTIMODAL PROCESSING 77

Determining the entire nonlinear mapping between measured and perceptual distances

would involve a significant psychological study with numerous subjects and sample clips, as

it is difficult for most people to quantify how perceptually different two segments are (what

does “twice as different” mean?). Instead, we adopt a three-step quantization approach:

we declare two segments are either the “same,” “similar,” or “different.” We identify these

as classes 1, 2, and 3, respectively, and define the three classes as follows:

“same” (1): Two segments that are of the same source in the same context: two video

shots that could occur without any intervening camera motion or off-camera action,

or two audio segments from the same speaker with the same background sounds.

“similar” (2): Two segments of the same source material, but recorded in a different

manner: two video shots of the same location but from different points of view, or

two audio segments of the same speaker but under different conditions (e.g., a news

correspondent on the street and the same correspondent recorded in the studio).

“different” (3): Two segments that do not fit into either class 1 or class 2; they have

no clear physical relationship to each other. They may have a higher-level semantic

relationship, but considering the images or sounds alone, are “different.”

(Naturally, there is some overlap in these three classes, and reasonable people could argue

whether a particular pair of segments fits into a given category.) This rough quantization

should be sufficient, because in most cases when two shots are different, exactly how different

they are is less relevant. More quantization steps would complicate the manual training and

classification process, while not providing much more detailed information for our goal of

distance normalization.

Given these three quantization steps, we may then view the distance normalization

process as a parameterized 3-hypothesis detection problem [40]. The prior probabilities for

each class depend on how many segments separate the two test segments, as segments that

are temporally closer are more likely to be in classes 1 or 2. To compute these priors, as a

CHAPTER 4. MULTIMODAL PROCESSING 78

function of segment separation, we manually labeled distances for audio and video segments

from 14.5 minutes of television data, including sitcoms, news, and documentary footage4.

Out of 1321 pairs of audio segments, a total of 126 pairs were declared to be in the “same”

class, 67 pairs were declared “similar,” and 1128 were “different.” 62 pairs of video shots

were labeled as the “same,” 61 pairs as “similar,” and 2747 pairs as “different.” A plot of

the audio prior probabilities, as a function of segment separation, is shown in Figure 4.3;

video priors are shown in Figure 4.4. The dominant feature in both prior functions is

the period-2 oscillation; this is due to the predominance of conversational audio and video

scenes. As segments are further separated temporally, the likelihood that they’re part of

the same dialog diminishes, as does the oscillation in the prior function. Naturally, the

probability of shots being different also increases gradually as time separation increases.

While we could use the raw data directly, we instead model the prior functions ana-

lytically using the sum of an exponential and an exponentially-decaying sinusoid (which

reduces to a (−1)n factor due to the period of 2).

πi(s) = αi + βie
−γi(s−1) + δie

−εi(s−1) cos(sπ) (4.3)

is the prior probability of class i for two segments s apart (where s= 1 signifies adjacent

segments). Parameters αi, βi, γi, δi, and εi for audio and video were derived from the

measured data for each class i; the resulting model prior functions for audio are also plotted

in Figures 4.3 and 4.4. (Models for video priors needed a bit of tweaking at s=1 and s=2

because “similar” video shots become an important phenomenon at those separations, while

audio segment similarity is not as common at s≤2.)

Next, distributions for the distance metrics to be normalized need to be considered.

The commonly-used Gaussian assumption for cepstral coefficients motivates a gamma dis-

tribution model for our audio segment distance metric [65]. The two gamma distribution
4We neglect any errors introduced by having only one person label classes instead of a larger sampling of

viewers. For a more complete characterization, both more footage and more viewers would be needed, but
the process is the same.

CHAPTER 4. MULTIMODAL PROCESSING 79

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

segment separation (1=adjacent)

pr
io

r
pr

ob
ab

ili
ty

probability of "same"
probability of "similar"
probability of "different"

Figure 4.3: Prior probabilities of “same,” “similar,” and “different” speaker segments as
a function of the number of segments separating them. Dashed lines represent measured
values from test audio data, while solid lines are the models discussed in the text.

CHAPTER 4. MULTIMODAL PROCESSING 80

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

segment separation (1=adjacent)

pr
io

r
pr

ob
ab

ili
ty

probability of "same"
probability of "similar"
probability of "different"

Figure 4.4: Prior probabilities of “same,” “similar,” and “different” video shots as a function
of the number of shots separating them. Dashed lines represent measured values from test
video data, while solid lines are the models discussed in the text.

CHAPTER 4. MULTIMODAL PROCESSING 81

parameters for each class were selected to provide the best mean-square fit to the distance

histogram; the resulting models are shown in Figure 4.1. Modeling the regional histogram

video shot distance metric proved more difficult, as there is no commonly agreed-upon

model for image histogram intersections. Nonetheless, the data seem to reasonably fit a

“skewed” Gaussian model, with the distributions then scaled to fit within the range of

possible distance values. The video models are of the form:

pi(x) = κie

−(xλi−µi)2+ηi

2σ2
i 0 ≤ x ≤ 1. (4.4)

Video class 3 (“different”) distances fit slightly better with a Weibull distribution; Weibull

parameters α and β were also selected for a best mean-square fit to the data. All three

class models are shown in Figure 4.2.

Given the densities for each class and the prior probability functions, a cost matrix C

is needed in order to formulate the detection problem. ci,j is the cost of choosing class i

when the perceptual distance was actually in class j. For testing purposes, we used

C =


0 0.5 2

0.5 0 1

2 1 0

 , (4.5)

as confusing classes 1 and 2 is not as serious as confusing 1 and 3. The matrix C need

not be symmetric, if for example it is very important not to associate segments that are

unrelated.

Determining the thresholds separating each class, as a function of segment separation,

must then be done. Assuming the cost of correct detection, ci,i, is zero, we choose class 1

(“same”) when the following two conditions are true:

p1(x)c3,1π1(k) ≥ π2(k) (c1,2 − c3,2) p2(x) + π3(k)c1,3p3(x) (4.6)

p1(x)c2,1π1(k) ≥ π2(k)c1,2p2(x) + π3(k) (c1,3 − c2,3) p3(x) (4.7)

where x is the measured segment distance, k is the temporal separation between the two

segments under test, pi(x) is the density function of the distance metric under class i, and

CHAPTER 4. MULTIMODAL PROCESSING 82

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

segment separation (1=adjacent)

di
st

an
ce

 m
et

ric
 th

re
sh

ol
d

threshold between "same" and "similar"
threshold between "similar" and "different"

Figure 4.5: Minimum-cost thresholds dividing measured audio distance values into three
subjective regimes, “same,” “similar,” or “different,” as a function of the number of audio
segments separating the two test segments.

πi(k) is the prior probability of class i at separation k. Similar equations can be derived

for classes 2 and 3. Given our model distribution functions, the decision regions for a fixed

segment separation can be represented by two thresholds: one threshold distinguishing

classes 1 and 2, and another distinguishing 2 from 3. The minimum-cost threshold values

computed for our cepstral audio segment distance metric, using the value for C given in

(4.5), are shown in Figure 4.5. The thresholds for the regional histogram video shot distance

metric are shown in Figure 4.6.

The errors in detection can be expressed as “confusion” matrices, where element (i, j)

CHAPTER 4. MULTIMODAL PROCESSING 83

5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

shot separation (1=adjacent)

di
st

an
ce

 m
et

ric
 th

re
sh

ol
d

threshold between "same" and "similar"
threshold between "similar" and "different"

Figure 4.6: Minimum-cost thresholds dividing measured video distance values into three
subjective regimes, “same,” “similar,” or “different,” as a function of the number of video
shots separating the two test shots.

CHAPTER 4. MULTIMODAL PROCESSING 84

is the number of distances that are detected as class i but are truly in class j. Using the

same 14.5 minute set of television data, the confusion matrices for the detection process on

our audio and video distance metrics are

Evideo =


33 9 2

13 9 11

16 42 2681

 and Eaudio =


17 1 9

28 12 56

81 54 1063

 . (4.8)

These correspond to a overall error rates of 46.7%, 85%, and 0.48% for the three classes of

video distances, and 86.5%, 82.1%, and 5.76% for the same classes in the audio case (even

though, as the cost matrix indicates, some of the errors are less critical than others).

Looking back at this three-hypothesis detection problem, one might wonder whether the

“similar” distance class (2) is really needed. In fact, the cost matrix C controls whether this

class is detectable, and thus whether it is necessary. Cost matrices that place less relative

weight on the class 1 versus 3 errors, for example

C2 =


0 0.5 1

0.5 0 0.75

1 0.75 0

 , (4.9)

yield a number of segment separations at which the two computed thresholds are equal. This

indicates a null region for class 2, meaning that only classes 1 and 3 are distinguishable. In

general, the cost matrix C can have a dramatic effect on the errors made by the distance class

detector described here; for any particular application, C needs to be carefully considered,

particularly in light of the relatively low prior probabilities of “same” (class 1) segment

pairs.

Finally, once the detector has been run over the raw distance metric output, one must

then assign subjective distance values that correspond to each class. We denote the vec-

tor mapping class numbers to perceptual distances as dnorm. For simplicity, we assign a

perceptual distance of 0 when two shots are in the “same” class and 1 when they’re in the

CHAPTER 4. MULTIMODAL PROCESSING 85

“different” class. As a heuristic judgement, we assign a perceptual distance of 0.3 to the

“similar” class, giving

dnorm =
[

0 0.3 1
]
. (4.10)

While the process of perceptual normalization is of interest in an abstract sense, we

shall see in the next chapter its utility in media representations which combine audio and

video distance information. The combined representations treat audio and video distance

values equally and provide mechanisms for comparing segments across modalities. Without

normalization, such combined representations make little sense as each distance metric’s

values have different real-world meaning. This process is of course not limited to the par-

ticular distance measures we use; with the development of more discriminating segment

distance metrics, the normalization methods described here can be easily repeated with the

new metric’s set of PDF’s.

In the chapters that follow, we shall assume all segment distances are normalized in this

way, using the cost matrix C given in equation (4.5) and the dnorm of (4.10).

Chapter 5

Association Matrices

Individually, raw segment distance measures—even perceptually normalized ones—are only

useful in specific circumstances, such as testing queries in a search engine. Instead, we would

like to extract and incorporate such distances in a media representation that facilitates

further processing. Such processing could include detection of “important” events (by some

definition), generation of summaries, or extraction of long-term content information.

One method of visualizing and interpreting segment distance information (and thus,

as we shall see in Chapter 6, temporal structure) is via sets of distance matrices. Foote

generated audio self-similarity matrices by applying correlation techniques directly to au-

dio streams [96]. Motivated by this technique, we describe a general method to combine

distance matrices from multiple modalities in Section 5.2, then simplify the representation

by restricting ourselves to three specific metrics in Section 5.3. A straightforward applica-

tion of this representation is described in Section 5.4, where “idiomatic” a/v sequences are

detected.

5.1 Prior Methods Combining Video and Audio

Information

Before diving into our multimedia representation techniques, it is worthwhile to review

other methods that have been used to combine video and audio content information in the

86

CHAPTER 5. ASSOCIATION MATRICES 87

analysis of media streams.

Traditionally, multimedia content analysis work has focused on video only, so many

techniques tend to use audio as a support to video analysis, rather than combining audio

and video on equal ground. As noted before, Chang, et al., used speech recognition to pick

out key words such as “touchdown” in sporting events, then used video segmentation and

edge detection to identify playing-field shots [80]. Abrupt changes in audio (but not nec-

essarily speaker changes) were used by Huang, et al., to differentiate shot boundaries from

higher-level scene breaks [81]. A music versus speech discriminator formed a critical part

of Minami’s video browser, which used the audio information to form temporal blocks [89].

Joint audio and video information has been exploited by a number of recent authors.

Saraceno combined a video cut detector and an audio classification tool (discriminating

silence, speech, music, and “noise”) with heuristic rules to find scenes and commercial

breaks based on the coincidence of audio and video transitions. Her later work incorporated

low-resolution frames and other features to recognize dialog, action, and story sequences,

yielding a roughly 85% detection rate [5, 97]. In addition to his audio-based work noted

in Chapter 4, Sundaram also examined the correlation between audio and video segment

boundaries [79]. Carnegie Mellon’s Informedia indexing system combined audio speech

recognition with caption-reading and closed captioning information to generate name-to-

face mappings [90].

Speaker and program recognition can only be improved by the fusion of audio and video

classifiers. Liu, et al., used a number of audio and video “clip”-level features as inputs to

a classifier to detect news reporting; they found that audio features are far more useful in

this detection problem [86]. Trained speaker identification in the audio and video (face)

domains was combined by Neti, et al., to improve recognition results [87]. Finally, Pan,

et al., looked at the joint audio/video classification problem from a more abstract point

of view, dividing methods into signal-level fusion, feature-level fusion, and decision-level

fusion; employing the latter form, they used a neural network to do the required joint

CHAPTER 5. ASSOCIATION MATRICES 88

density function estimates [91].

5.2 Association Matrix Construction

One of the central goals of combining distance metric information from multiple modalities is

to associate segments that would not otherwise be seen as similar. For example, if two video

shots have visually different content, but it is determined that the same speaker dominates

both, then the video shots are in some sense similar and this fact should be detectable in an

automated fashion. We therefore call our stream representation, which combines the results

from a number of distance metrics across multiple modalities, an “association” matrix.

The construction an association matrix starts with a given set of distance metrics,

{m1, . . . ,mK}, taken over segments of video, audio, or other information such as closed-

captioning or studio notes. mk, for instance, may be a face recognition technique that

compares two video shots to determine whether the same face appears in both. A vector of

segments appropriate to the distance metrics is then composed,

S = [Sm1 Sm2 · · · SmK] , (5.1)

where each Smk is a row vector of segments appropriate to distance metric mk. If, for

example, K = 2, m1 is a video shot distance metric, and m2 is an audio speaker distance

metric, then S is a row vector consisting of the video shots followed by the audio (speaker)

segments. (An element in S is a “segment” in the abstract sense; the actual segment data

need not be copied. One can alternatively think of S as holding segment indices.)

The association matrix A is a block matrix of distance matrices, where the blocks are

determined by the block vector structure of S. We define the elements of A as follows:

ai,j = Di,j(si, sj), where si is the i-th scalar element of S and Di,j is the distance metric

appropriate to segments si and sj . If si and sj are both parts of the same block, k, of S,

then Di,j = mk. Otherwise, if one is defined, Di,j is a distance metric across the respective

segments (which may not be of the same media). If no distance is defined or appropriate,

CHAPTER 5. ASSOCIATION MATRICES 89

ai,j = 1 (our defined maximum distance). In order for the intra- and inter-media segment

distances to be meaningfully compared, they must all be normalized to a common perceptual

standard using the techniques of Section 4.4.

The block matrix structure of A is

A =


D1,1 (Sm1 , Sm1) D1,2 (Sm1 , Sm2) · · · D1,K (Sm1 , SmK)

...
...

. . .
...

DK,1 (SmK , Sm1) DK,2 (SmK , Sm2) · · · DK,K (SmK , SmK)

 . (5.2)

Each block, Dk,l, is a distance matrix: element (i, j) is the distance from segment i to

segment j. (Another possible interpretation of A is as a K×K×2 array.)

The association matrix will have block-symmetry if Dk,l = DT
l,k for k 6= l, which is to

say that the chosen cross-modality distance metrics are symmetric. For example, an audio-

video cross-modality distance metric is symmetric if the distance from a particular video

shot sv to an audio segment sa is equal to the distance from sa to sv. If in addition each

distance metric mk is self-symmetric, then each Dk,k will be symmetric, as will the entire

association matrix A.

For long streams, the association matrix can grow to unwieldy sizes at a rate of roughly

N2; one possible way to deal with this issue is to select only segments of particular interest.

In the case of causal processing, one could use all the segments within some time window

of the past, and beyond that point only preserve representative segments of important

characters or scenes (provided that the existence of these can be detected within the time

window).

5.3 A/V Association Matrices

The formulation above allows for a great deal of flexibility in choosing distance metrics

and segment types; it is meant to be a general framework for combining multiple distance

metrics’ information in single matrix. In order to actually compute association matrices,

CHAPTER 5. ASSOCIATION MATRICES 90

we need to restrict ourselves to a concrete set of distance metrics.

Given the development in Chapter 4, we will set K = 2 and use

m1: the regional histogram video shot distance (Section 4.3)

m2: the cepstral audio speaker segment distance metric (Section 4.2)

Both these distance metrics are first normalized according to the techniques of Section 4.4;

their values are therefore restricted to those in equation (4.10). The segment vector S =

[Sm1 Sm2] is therefore the set of video segments, followed by the set of audio segments.

The accuracy of the segmentation schemes used to determine S is of paramount impor-

tance, as the distance metrics will be meaningless if they are computed over time intervals

containing more than one segment! The characterization of these errors, and how they inter-

act with the oscillating priors on the normalized distances (Figures 4.3 and 4.4) are complex

issues that have not been satisfactorily studied. For the present work, we assume that the

video and audio segmentation are perfect, which means they must be done manually. Given

the video segmentation techniques described in Chapter 2, this is not an unreasonable as-

sumption in the video domain. In the audio domain, however, perfect speaker segmentation

is an elusive goal, made even more difficult by modern television’s propensity for mixing

music, voices, and sound effects on top of one another.

Using the two distance metrics given above, the association matrix takes on a much-

simplified 2×2 block form:

A =

 DV V DT
AV

DAV DAA

 , (5.3)

with DV V the distance matrix among video shots and DAA the distance matrix among

audio segments. DAV , the audio-video distance matrix, is in our case simply based on the

temporal overlap of the audio and video segments:

DAV (i, j) = 1− (overlap between audio segment i and video segment j)
min(length of audio segment i, length of video segment j)

(5.4)

CHAPTER 5. ASSOCIATION MATRICES 91

(Note that video segment j is sj , while audio segment i is sj+nV , where nV is the number

of video segments.) Under this metric, segment pairs where one is a strict temporal subset

of the other have distance 0, which is appropriate when associating such audio and video

segments. Non-overlapping segment pairs have distance 1, while partially-overlapping pairs

have a distance roughly comparable to the perceptually normalized distance metrics among

audio and video segments, so no additional normalization of DAV is necessary.

Blocks DV V and DAA are symmetric1, and DAV is almost all ones except near the diag-

onal; these properties cut the computation time for A significantly. (As mentioned above,

for very long streams or limited-memory situations, it may only be necessary to calculate

A for the few dozen shots preceding and following one of interest, on the assumption that

temporally distant events are less relevant. This abridged A may be augmented with au-

dio or video segments deemed “important” by previous analysis, such as those of a news

anchor.)

The association matrix for a seven minute segment of the PBS “Charlie Rose” talk show

is shown in Figure 5.1; the matrix is split into blocks as in (5.3), with the upper-right matrix

omitted for clarity. The first 55 seconds of this clip (video shots 1–10, audio shots 1–9) are

a conversation between the host and one guest. Between the 55 and 65 second marks, the

show’s logo appears and music plays while a new guest is brought in. The host speaks

between the 65 and 110 second marks, even though the video shots alternate (video shots

12–15). The remaining time consists almost entirely of a single guest speaking, but with a

number of distinct video shots.

Although all axes in Figure 5.1 are time-based, they give little sense of the durations

of different events and where events lie; many of the video shots occur in short bursts, for

example. Figure 5.2 is a version of the association matrix with the columns and rows scaled

in proportion to their segments’ durations. Yet another visualization aid is to overlay the
1DV V is, strictly speaking, only symmetric if segment pairs are temporally ordered before computing the

distance in (4.1). In some limited applications, relaxing this condition may prove useful (to find stories told
backward).

CHAPTER 5. ASSOCIATION MATRICES 92

(time-scaled) DV V and DAA blocks in a translucent fashion; the result is Figure 5.3. In this

plot, time segments where only video shots match are shown in magenta, time segments

with the same audio (speaker) are cyan, and intervals where both audio and video match

closely are shown in purple.

Another example of the association matrix and translucent A/V distance matrices is

shown in Figures 5.4 and 5.5, respectively. The clip in this case is a 7.5 minute segment

from the news broadcast of a local CBS affiliate. It begins with short previews of two

stories, and at the 10 second mark, two anchors introduce the first story. Between 31 and

172 seconds into the clip, one reporter narrates and interviews a number of people on the

street before returning to the newsroom. An unrelated but similarly-structured news story

occurs between the 204 and 359 second marks. The two anchors read stories through the

424 second mark, then on-location images and a short preview appear before the clip ends.

Figure 5.6 contains the overlaid A/V matrices for a 71 second segment from the NBC

sitcom “Frasier.” The segment begins with 10 seconds of the character Frasier Crane walking

through a radio studio, then the balance of the clip is a dialog between Frasier and another

character. The audio segments form an exact dialog sequence, alternating speakers. The

video, in addition to alternating between the speakers’ faces, contains two additional shots

with both characters in the frame (beginning at 15.2 and 62.9 seconds).

Figures 5.7 and 5.8 are generated from the first ten minutes of a broadcast of CBS’s

“The Late Show with David Letterman.” As is clear from Figure 5.8, the first half of this

clip is a monologue sequence. After that point, there is a short sequence of the show’s

band playing (319.8–340.3 sec), followed by a number of shots of David Letterman at his

desk with only him speaking. He then interviews a staff member (403.7–547.2 sec), and

finally cuts to a pre-recorded video clip of the staff member interviewing people on the

street. Throughout the Letterman stream, audience applause and laughter are interspersed

with the speakers; although many of the non-voice segments are properly ignored by our

audio distance metric, those with mixed voices and applause only detract from the speaker

CHAPTER 5. ASSOCIATION MATRICES 93

vi
de

o
sh

ot
s

video shots

video−video distances

10 20 30

5

10

15

20

25

30

35

au
di

o
se

gm
en

ts

video shots

audio−video distances

10 20 30

2

4

6

8

10

12

14

au
di

o
se

gm
en

ts

audio segments

audio−audio distances

5 10 15

2

4

6

8

10

12

14

Figure 5.1: Perceptually normalized distance matrices for a 7 minute Charlie Rose interview
clip. Columns of the upper- and lower-left matrices are time-aligned, as are rows for the
lower-left and lower-right matrices. Darker shades represent smaller segment distances.

CHAPTER 5. ASSOCIATION MATRICES 94

se
co

nd
s

of
 v

id
eo

seconds of video

video−video distances

0 100 200 300

0

50

100

150

200

250

300

se
co

nd
s

of
 a

ud
io

seconds of video

audio−video distances

0 100 200 300

0

50

100

150

200

250

300

se
co

nd
s

of
 a

ud
io

seconds of audio

audio−audio distances

0 100 200 300

0

50

100

150

200

250

300

Figure 5.2: Perceptually normalized distance matrices for the 7 minute Charlie Rose in-
terview clip, with element widths proportional to segment lengths in seconds. Columns of
the upper- and lower-left matrices are aligned, as are rows for the lower-left and lower-right
matrices. Darker shades represent smaller segment distances.

CHAPTER 5. ASSOCIATION MATRICES 95

seconds

se
co
nd
s

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Figure 5.3: Charlie Rose audio-audio and video-video time-normalized distance matrices
superimposed on one another. Magenta denotes close pairs of video segments, cyan denotes
close pairs of audio segments, and purple represents intervals that are close in both the
audio and video domains. Thumbnails at the top of the figure correspond to selected video
shots.

CHAPTER 5. ASSOCIATION MATRICES 96

vi
de

o
sh

ot
s

video shots

video−video distances

10 20 30 40 50 60

10

20

30

40

50

60

au
di

o
se

gm
en

ts

video shots

audio−video distances

10 20 30 40 50 60

10

20

30

40

au
di

o
se

gm
en

ts

audio segments

audio−audio distances

10 20 30 40

10

20

30

40

Figure 5.4: Perceptually normalized distance matrices for a 7.5 minute CBS news clip.
Columns of the upper- and lower-left matrices are time-aligned, as are rows for the lower-
left and lower-right matrices. Darker shades represent smaller segment distances.

CHAPTER 5. ASSOCIATION MATRICES 97

seconds

se
co
nd
s

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Figure 5.5: Superimposed audio-audio and video-video time-normalized distance matrices
for a 7.5 minute CBS news clip. Magenta denotes close pairs of video segments, cyan
denotes close pairs of audio segments, and purple represents intervals that are close in both
the audio and video domains.

CHAPTER 5. ASSOCIATION MATRICES 98

seconds

se
co
nd
s

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Figure 5.6: Superimposed audio-audio and video-video time-normalized distance matrices
for a 71 second segment from NBC’s sitcom “Frasier.” Magenta denotes close pairs of video
segments, cyan denotes close pairs of audio segments, and purple represents intervals that
are close in both the audio and video domains.

CHAPTER 5. ASSOCIATION MATRICES 99

matching accuracy. Despite this issue, Mr. Letterman’s voice is properly matched, thus

associating visually distinct shots such as the monologue and desk shots (as evidenced by

the many cyan areas in Figure 5.8, yet very few magenta blocks).

A number of simple temporal properties are directly evident from the association ma-

trices. Dialogs, for example, appear as strict checkerboard patterns in DAA and near-

checkerboards in DV V . A single audio segment covering a number of video shots signifies a

narrated scene or set of scenes (for instance, nearly everything after the 110 second mark in

Figure 5.3 can be considered a narrated segment). Isolated far off-diagonal “same” (low dis-

tance) matrix elements indicate two temporally-distant shots have something in common:

either similar video if in DV V , or the same speaker if in DAA. “Action” sequences manifest

themselves as areas with only the main diagonal having non-1 elements, most likely in DV V

and to a lesser degree in DAA.

5.4 Idiomatic Sequence Detection

Indeed, most local temporal properties of multimedia streams can be interpreted in the

framework of association matrices by expressing them as local matrix properties. With

such descriptions, the properties can then be detected using correlation-type techniques on

regions of one or more of the blocks of A. Using the association matrix to detect local

temporal properties of media streams can be seen as a generalization of Yeung’s work in

identifying dialog and action events in video-only streams [3]. As we shall see, it also allows

for easy implementation of cast-detection techniques, such as that of Liu and Wang [84].

While the notion of “important” temporal properties can be very context- and producer-

dependent, we aim for generality by detecting sequences that are so common that they can

be called “idiomatic” within the set of possible editing sequences. These idiomatic sequences

are by nature multimodal, as the media stream is edited as a whole, not video then audio

independently. As the alignment of audio and video transitions may not be perfect, however,

CHAPTER 5. ASSOCIATION MATRICES 100

vi
de

o
sh

ot
s

video shots

video−video distances

10 20 30

5

10

15

20

25

30

35

au
di

o
se

gm
en

ts

video shots

audio−video distances

10 20 30

5

10

15

20

25

30

35

au
di

o
se

gm
en

ts

audio segments

audio−audio distances

10 20 30

5

10

15

20

25

30

35

Figure 5.7: Perceptually normalized distance matrices for the first 10 minutes of CBS’s
“The Late Show with David Letterman.” Columns of the upper- and lower-left matrices
are time-aligned, as are rows for the lower-left and lower-right matrices. Darker shades
represent smaller segment distances.

CHAPTER 5. ASSOCIATION MATRICES 101

seconds

se
co
nd
s

100 150 200 250 300 350 400 450 500 550

100

150

200

250

300

350

400

450

500

550

Figure 5.8: Superimposed audio-audio and video-video time-normalized distance matrices
for the first 10 minutes of CBS’s “The Late Show with David Letterman.” Magenta de-
notes close pairs of video segments, cyan denotes close pairs of audio segments, and purple
represents intervals that are close in both the audio and video domains.

CHAPTER 5. ASSOCIATION MATRICES 102

our approach is to detect such sequences in each modality independently, then find time

intervals where the detections overlap. (Exceptions to this approach will be dealt with in

Section 5.4.3.)

In keeping with the simplified A/V association matrix approach of Section 5.3, we use

the upper-left (video-video) and lower-right (audio-audio) blocks of a stream’s association

matrix. The detection algorithm is then applied to each of these two distance matrices in the

same manner; from this point on, the single-modality distance matrix under consideration

will simply be referred to as D, with D = DV V or D = DAA as appropriate.

We will first develop the algorithm in general, then describe how to apply it to a number

of specific idiomatic sequences.

5.4.1 Detection of Prototype Sequences

Given a single-modality MD×MD distance matrix D, we wish to find instances of cer-

tain properties within D that indicate temporal sequences of interest (dialogs, character

introductions, etc.). A block correlation-based approach is adopted, where the correlation

between a small prototype matrix and a subset of D is computed and thresholded2. An

MP×NP prototype matrix P contains elements with one of three values:

−0.5: corresponding segment pairs should have low distance (“same,” class 1)

+0.5: corresponding segment pairs should have high distance (“different,” class 3)

0: don’t care about the corresponding segment pairs; their distance is irrelevant to the

decision of whether the prototype fits the measured distance matrix

The construction of prototype matrices will be discussed in Section 5.4.2.
2Although we haven’t pursued it here, it would be interesting to study this as a more formal detection

problem. A difficult issue, however, is that the “noise” isn’t additive, but instead typically involves insertions
and deletions of time segments. Another source of noise is the fallibility of the segment distance metrics and
resulting incorrect perceptual distance classes.

CHAPTER 5. ASSOCIATION MATRICES 103

We define the block correlation function, starting at element (k, l), as follows:

ρblk(D,P, k, l) =

MP∑
i=1

NP∑
j=1

(
di+k−1,j+l−1 − 1

2

)
pi,j

MP∑
i=1

NP∑
j=1

p2
i,j

. (5.5)

Recall that D will have elements ranging from 0 to 1, so 1/2 is subtracted to remove the

bias in correlation (yielding, in the ideal case, values equal to those in P). Also note that

we don’t normalize by the L2 norm of D − 1
2 ; this is for two reasons. First, the value is

nearly constant: only “similar” segments have squared values that are not 1
4 . The second

reason is that it allows us to have “don’t care” regions that don’t detract from the overall

correlation (as they implicitly would if we divided by the size-dependent norm of D). We

are essentially calculating the fraction of “do care” segments that match.

There are a small number of cases, as we shall see in Section 5.4.2, where a raw count of

the non-matching segment pairs is more appropriate than the fractional correlation calcu-

lated in equation (5.5). To differentiate it from the correlation calculation’s threshold, will

denote this absolute threshold as “X segments” when it is necessary.

In order to handle a wider variety of temporal prototypes, we divide the prototype

sequences to detect into two classes:

Self-similar prototypes: if temporal interval T has the desired property, then all sub-

intervals of T also have the desired property (e.g., subsets of dialog sequences are

themselves dialogs).

Non-self-similar prototypes: if temporal interval T has the desired property, there exists

some sub-interval of T that does not have the property (e.g., returning to a news

anchor at the beginning and end of a story).

Regardless of their self-similarity, prototypes may have a global minimum length; a 2-

segment dialog, for instance, is meaningless. We also characterize the prototypes as either:

Local: whether an interval T fits the prototype depends only on segments within T .

CHAPTER 5. ASSOCIATION MATRICES 104

Global: testing whether an interval T fits the prototype requires knowledge of some seg-

ments and distances outside T .

While the general techniques are similar and relatively straightforward, the detection of

each class of prototype sequences differs in the details.

Local, Self-similar Prototypes

The simplest case, local and self-similar prototype sequences are characterized by a single

square prototype matrix for a given sequence length; we denote the l×l prototype matrix

by Pl. Self-similarity allows us to detect the sequences of interest by starting with a short

detected sequence and growing it until it reaches segments that do not fit the prototype.

The following algorithm essentially makes its way through the segments, attempting to

find the longest sequence whose correlation with the prototype is above a threshold TP

CHAPTER 5. ASSOCIATION MATRICES 105

(discarding sequences shorter than a minimum length, Tl):

i = 1

while(i ≤MD)

l = Tl − 1

while (ρblk(D,Pl+1, i, i) ≥ TP) (*)

l = l + 1

if (l + i− 1 > MD)

break

end

if (l ≥ Tl)

declare idiomatic sequence starting at segment i, length l

if (events cannot overlap)

i = i+ l − 1

end

i = i+ 1

end

The test in line 10 asks whether it is reasonable for detected events to overlap in time;

for most types of idiomatic sequences, it is not, so the next l segments are skipped once

a detection is made. Dialog is an example: were it not for this test, a 10 segment dialog

would be detected 11−Tl times (once for each segment, all with the same ending segment).

As we will see in Section 5.4.2 though, there are cases where two separate instances of a

particular idiomatic sequence can reasonably overlap in time.

Global, Self-similar Prototypes

Global prototype sequences can be seen as a special case of local sequences, where the

prototype matrix P is of a fixed size, MD×MD, the same as D. The prototype matrix is

CHAPTER 5. ASSOCIATION MATRICES 106

now dependent on the segment offset within D currently being tested, as well as the length

of the candidate sequence, so we denote it by Pl,i, where i is the segment number beginning

the candidate sequence. Once again, self-similarity allows us to grow candidate sequences

by increasing l until one is found that does not sufficiently match. The only change to the

algorithm presented on page 105 is in the line labelled (*):

while (ρblk(D,Pl+1,i, 1, 1) ≥ TP)

(note the fixed offset, (1, 1), in the correlation calculation).

Local, Non-self-similar Prototypes

A lack of self-similarity prevents prototype matrices in this class from being “grown” until

the largest match is found, because some of the smaller prototype sequences will fail the

correlation test even if a larger one would pass. We can handle a large number of such cases

by imposing a two-step test: one prototype matrix is used to grow the potential sequence

as large as possible, then another prototype matrix is used as a confirming test on the final

size. Specifically, we replace the “declare idiomatic sequence...” line of the algorithm on

page 105 with the following:

if (ρblk(D,PC
l , i, i) ≥ TC)

declare idiomatic sequence starting at segment i, length l

end

where PC
l is the confirming prototype matrix and TC is the correlation threshold on this

matrix. Again, in some cases, it is more appropriate for TC to be a raw number of non-

matching segments.

While this two-step method greatly expands the number of idiomatic sequences we can

detect, it cannot handle every non-self-similar possibility. An example is the “independent

event” sequence of Section 5.4.2; it is non-self-similar, but has other properties which make

CHAPTER 5. ASSOCIATION MATRICES 107

it easy to detect with only a slight modification to the framework for global, self-similar

prototypes. In addition, for idiomatic sequences that can only be one segment in length

(such as “character introduction”), the method of this section can be used to effectively

provide two independent correlation tests, with two thresholds, on the measured distance

matrix.

Global, Non-self-similar Prototypes

To handle idiomatic sequences having global, non-self-similar prototypes, one only need

combine the modifications described in the two previous sections. The resulting algorithm

uses two prototype matrices, each MD×MD in size: Pl,i and PC
l,i.

5.4.2 Generation of Idiomatic Sequences’ Prototype Matrices

The format of the prototype matrix entirely determines what types of idiomatic sequences

it will detect and how it will perform. As the prototype matrices are not constant—to allow

for varying-length sequences, and for global prototypes, different starting point offsets—

we will describe their general form. In most cases, the prototype form for a particular

idiomatic sequence can be easily derived by thinking about which segments must be the

same speaker/image, and which must not, in order to construct an archetypical sequence

of the desired form.

The most straightforward idiomatic sequence to detect is dialog. Dialog sequences con-

sist of two unrelated speakers/images, with the audio or camerawork alternating between

them. This results in every other segment pair being “same,” creating a checkerboard pat-

tern in the distance matrix. (Real dialogs may have intermediate segments with both actors

in the frame, something we currently account for only in the selection of the threshold TP .

More general time alignment techniques may help.)

The idiomatic sequences we are currently able to detect, within both the audio and video

domains, are summarized below. This list is not an exhaustive set of possible detectable

CHAPTER 5. ASSOCIATION MATRICES 108

sequences; it only represents common idioms whose forms are simple to determine. Below

each entry are the details of its detection, including empirically-determined correlation

thresholds. The prototype matrices are examples to show the general form, as the actual

matrices will depend on the parameters l and i; in each case, represents −0.5 (“same”),

2 denotes +0.5 (“different”), and × indicates 0 (“don’t care”). Elements along the main

diagonal are normally “don’t care” because every segment is identical to itself, giving a

normalized distance of 0. For global prototype matrices, the (i, i)-th element is denoted ⊗

to show the offset of the center portion within the ellipses.

• Dialog: Segments alternate between two primary characters (speakers in audio, im-

ages in video). In detecting conversations, audio dialogs are more meaningful than

video dialog sequences, although the latter can offer important information. In the

“Charlie Rose” clip (Figure 5.1), for example, one guest speaks for a long time (a

single audio segment), while the camera switches back and forth between the two par-

ticipants. Video shots during an audio dialog occasionally do not follow the typical

back-and-forth format (being interspersed with wide-angle shots of both participants,

for example), making detection of the audio event all the more important.

Global/Local: local Min Length (Tl): 4

Self-Similar: yes Testing TP : 0.75

Can Overlap: no

Pl :
(l = 6)



× 2 2 2

2 × 2 2

2 × 2 2

2 2 × 2

2 2 × 2

2 2 2 ×



• Action: A sequence of segments that are wholly independent of one another, such

as a sequence of video shots following a moving character. Such sequences generally

indicate a progression of events, rather than an interactive or situational scene.

CHAPTER 5. ASSOCIATION MATRICES 109

Global/Local: local Min Length (Tl): 5

Self-Similar: yes Testing TP : 0.999

Can Overlap: no

Pl :
(l = 6)



× 2 2 2 2 2

2 × 2 2 2 2

2 2 × 2 2 2

2 2 2 × 2 2

2 2 2 2 × 2

2 2 2 2 2 ×



• Return to Anchor: The first and last segments of the sequence are the same

speaker/image, but the intermediate segments are dissimilar from both the first and

last. This sequence is typical of television news shows, where an anchor desk shot

appears between successive stories.

Global/Local: local Min Length (Tl): 6

Self-Similar: no Testing TP : 0.99

Can Overlap: yes Testing TC : 0.995

Pl :
(l = 6)



× 2 2 2 2 2

2 × × × × ×
2 × × × × ×
2 × × × × ×
2 × × × × ×
2 × × × × ×


PC
l :

(l = 6)



× 2 2 2 2

2 × × × × 2

2 × × × × 2

2 × × × × 2

2 × × × × 2

2 2 2 2 ×



• Character Introduction: Although not strictly limited to human characters, this

idiomatic “sequence” of one segment occurs the first time a new video shot or speaker is

introduced. To distinguish introductions other events, we require that we see the same

speaker/image at least one more time during the media stream. (As such, detection

of character introductions is not a causal operation unless an a priori -unknown delay

is allowed in processing.) Detection of character introductions benefits from using an

absolute threshold (TC) during the confirmation step, as we don’t care so much that

a particular fraction of future segments contain the given speaker/image, only that a

raw absolute number of segments do.

CHAPTER 5. ASSOCIATION MATRICES 110

Global/Local: global Min Length (Tl): 1 (only possible size)

Self-Similar: no Testing TP : 0.99

Can Overlap: no Testing TC : 1 segment

Pl,i :
(l = 1)



× · · · × × 2 · · · ×
...

. . .
...

× × × 2 ×
× × × 2 ×
2 2 2 ⊗ ×
...

. . .
...

× · × × × · · · ×


PC
l,i :

(l = 1)



× · · · × × × · · · ×
...

. . .
...

× ⊗
× × × ×
× × × ×
...

. . .
...

× · × × · · · ×



• Character Departure: The opposite of a character introduction, a departure occurs

when the current segment has been seen at least once before, but is never seen again.

Detection of character departures can not be done causally, as the entire remaining

portion of the stream must first be known. As in character introductions, an absolute

threshold is used during the confirmation step because it is only the raw number of

matching segments that matters.

Global/Local: global Min Length (Tl): 1 (only possible size)

Self-Similar: no Testing TP : 0.99

Can Overlap: no Testing TC : 1 segment

Pl,i :
(l = 1)



× · · · × × × · · · ×
...

. . .
...

× ⊗ 2 2 2

× 2 × × ×
× 2 × × ×
...

. . .
...

× · 2 × × · · · ×


PC
l,i :

(l = 1)



× · · · × × · · · ×
...

. . .
...

× × × ×
× × × ×

⊗ ×
...

. . .
...

× · × × × · · · ×



• Topic Change: As the name implies, these are sequences containing exactly two

unrelated subsequences (no “same” segment pairs between them), where each subse-

quence does contain some intra-subsequence associations. Topic change sequences are

characterized by a 2×2 block-identity form for their distance matrices, and are thus

not strictly self-similar. Subsets of topic change sequences that center about the same

CHAPTER 5. ASSOCIATION MATRICES 111

point, however, are themselves topic changes, so we can detect this idiomatic sequence

by modifying the local self-similar sequence detector slightly: instead of growing test

sequences from the upper-left corner, we instead grow them from the center point.

Pl is thus 2l × 2l in size; ⊗ in the following three matrices represents the “center”

element from which the prototype matrices are grown. (The equal lengths of the two

subsequences in the prototype matrix does not impose a similar requirement on the

two topics, as matching candidate sequences are grown from the change point, thus

some subset will have equal length subsequences.) In order to prevent the Pl proto-

type sequence from growing too far, thus unnecessarily failing the PC
l test, we use

only the outer elements of the prototype when growing (except for the initialization

step, where l = Tl, which must include all interior elements).

Global/Local: local Min Length (Tl): 5

Self-Similar: no Testing TP : -0.2

Can Overlap: yes Testing TC : 0.9

Pl :
(l = Tl)



× × × ×
× × × ×
× × × ×

× × × ⊗
× × × ×
× × × ×


Pl :

(l > Tl)



× 2 2 2

× × × × 2

× × × × 2

2 × × ⊗ ×
2 × × × ×
2 2 2 ×


PC
l :

(l = 3)



× × × 2 2 2

× × × 2 2 2

× × × 2 2 2

2 2 2 ⊗ × ×
2 2 2 × × ×
2 2 2 × × ×



• Independent Event: An independent event sequence is one that is completely un-

related to any past or future segments. Examples include non-repeated commercials,

short segments dividing larger portions of a show, and flashbacks and similar inter-

ludes3. Segments within an independent event may, however, be associated with one

another. Despite having a global, non-self-similar prototype, independent event se-

quences cannot be detected using the two-step method presented above. Instead,

they can be found by starting, at each segment offset i, with the largest l that will fit
3For another approach to commercial break detection, see the works of Lienhart and McGee, which use

statistics such as cut rate, mean volume, and number of black frames [98, 99].

CHAPTER 5. ASSOCIATION MATRICES 112

(l = MD− i+ 1), then shrinking the prototype matrices until an above-threshold cor-

relation with the distance matrix is found. While independent events can be nested

in complex ways, we choose to prevent overlapping detections in order to avoid a

number of degenerate cases. (This is an issue that deserves further study, as the

non-overlapping assumption prevents detection of a number of interesting events.)

Global/Local: global Min Length (Tl): 1

Self-Similar: no Testing TP : 0.99

Can Overlap: no

Pl,i :
(l = 2)



× · · · × 2 2 · · · ×
...

. . .
...

× × 2 2 ×
2 2 ⊗ × 2

2 2 × × 2
...

. . .
...

× · × 2 2 · · · ×



• Path Split: The precise meaning of “path” will be explored in Section 6.4, but a

split essentially means that two or more (distinct) future segments are directly or

transitively related to the current one, and one or more past segments are similarly

associated. Ideally, at a high level, this corresponds to a segment where a single

(transitive) plot path splits into two parallel story lines. Detection of path split

segments requires the use of memory-based distance matrices, described in Section 6.3,

instead of the standard distance matrices given above. (The memory-based distance

matrices make use of transitive links, but include only the temporally-closest links

from each particular segment.)

CHAPTER 5. ASSOCIATION MATRICES 113

Global/Local: global Min Length (Tl): 1 (only possible size)

Self-Similar: no Testing TP : 1 segment

Can Overlap: no Testing TC : 2 segments

Pl,i :
(l = 1)



× · · · × × · · · ×
...

. . .
...

× × × ×
⊗ × ×

× × × × ×
...

. . .
...

× · × × × · · · ×


PC
l,i :

(l = 1)



× · · · × × × · · · ×
...

. . .
...

× × × × ×
× × ⊗
× × × ×
...

. . .
...

× · × × · · · ×



• Path Merge: Merges are the temporally-reversed analog to splits, where multiple

distinct segments from the past are transitively associated with the current one, which

is in turn associated with at least one future segment. Path merges correspond to

the semantic ideal of two parallel story lines (linked by transitive close associations)

merging into a single path. It is possible for a single segment to be both a merge and

a split if it ties together multiple parallel transitive links that continue both into the

past and the future. Like path splits, detection requires the memory-based distance

matrices of Section 6.3.

Global/Local: global Min Length (Tl): 1 (only possible size)

Self-Similar: no Testing TP : 2 segments

Can Overlap: no Testing TC : 1 segment

Pl,i :
(l = 1)



× · · · × × · · · ×
...

. . .
...

× × × ×
⊗ × ×

× × × × ×
...

. . .
...

× · × × × · · · ×


PC
l,i :

(l = 1)



× · · · × × × · · · ×
...

. . .
...

× × × × ×
× × ⊗
× × × ×
...

. . .
...

× · × × · · · ×


In light of this listing, one can visually pick out certain idiomatic sequences within

the sample clips of Figures 5.1–5.8; low-distance segment pairs are shown in black in both

cases. The video distance matrix for the CBS news clip (Figure 5.4), for instance, contains

CHAPTER 5. ASSOCIATION MATRICES 114

a number of “return to anchor” segments. Video segment 11 and audio segment 5 (which

coincide in time) of the Charlie Rose clip fit the prototype of “independent event” sequences;

that interval contains a short musical interlude between two interviews. Finally, in the David

Letterman clip (Figure 5.8), the three dominant scenes, respectively, are a monologue, a

narration (discussed in the next section), and a dialog where one participant has much less

on-air time than the other. Note that particular segments may belong to multiple idiomatic

sequences.

Depending on the locality and self-similarity of the prototype under consideration, one

of the four algorithms presented in Section 5.4.1 is used to locate instances of the idiomatic

sequence. Even for very long streams, local prototypes are simple to handle as they require

only knowledge of a small block matrix around the current segment. Global prototypes

require at least some matrix elements to be preserved, and can result in large matrix tests if

the source video is more than a few hundred shots long (roughly one half-hour of television

with commercials, or a feature-length film). It is worth recalling that the distance matrices

are quantized into 3 values, thus requiring only 2 bits per element in the ideal case, and the

correlation calculation (5.5) can be easily vectorized. As a (non-vectorized) timing example,

with a video of 552 shots and 290 audio segments, finding global-prototype introductory

segments takes 94 seconds (16 times faster than real time), while finding local-prototype di-

alog sequences takes 15 seconds, both on a 350 MHz Sun workstation. Specific experimental

results are given in Section 5.4.4.

5.4.3 Cross-modality Idiomatic Sequences

Each of the idiomatic sequences described above can be detected in only one modality,

audio or video, at a time. In order to form a truly multimodal description of the stream,

one should correlate the detections based on time intervals (not shot numbers) where they

overlap: intervals with a particular idiomatic sequence in both audio and video are flagged.

Another class of idiomatic sequences involves the interaction of audio and video. The

CHAPTER 5. ASSOCIATION MATRICES 115

DAV (lower-left) block of the association matrix is the only useful statistic in this case.

Among the most straightforward examples of its use are:

• Narration: Narrated intervals consist of a single audio segment overlapping with a

number of video segments. At present, we ignore intra-modality associations among

the video segments, concentrating only on DAV ; future work should certainly take

them into account. Narrated intervals can be detected by simply counting the number

of 0 (or nearly 0) distance elements in each row of DAV . Rows with five or more 0

elements are audio segments of narration.

• Group Audio: The transpose of narration, this sequence consists of a number of

speaker segments during the same video shot. Generally such a sequence occurs

during a wide-angle video shot of a number of participants in a discussion. Detection

is done in the same manner as for narrated intervals, except that DT
AV is used as the

base distance matrix (and the results are video shots with group audio).

• A/V Alignment: If a sub-matrix of DAV is the identity (or more precisely, 1− I),

the corresponding audio and video segments align precisely in time. Straightforward

heuristic algorithms can be used to test for this condition. The semantic/idiomatic

meaning of such an alignment is somewhat hazy, but its presence is occasionally

noteworthy as typical television and film media are not aligned in this way.

More complex DAV sequences could also be be detected using correlation-type algo-

rithms similar to those in Section 5.4.1. Although it has not been investigated, it would

certainly possible to construct idiomatic sequences that require certain forms within audio

and video distance matrices, combined with a certain form of the DAV cross-distance. Such

idioms would likely be rather complex and application-specific.

CHAPTER 5. ASSOCIATION MATRICES 116

5.4.4 Detector Experimental Results

In addition to the four television clips named above, we also used short clips from ABC

and NBC news in testing the idiomatic sequence detectors. The total test set consisted

of 46060 frames, or 25.6 minutes, of digitized video and audio. Detected sequences were

studied in light of the “ground truth,” meaning what an actual viewer would perceive (given

the prescribed minimum sequence lengths and overlap prohibitions), as well as in terms of

how well the detectors could possibly do given a likely imperfect association matrix. Any

discrepancy in the results is due to inadequacies in the video and (especially) audio segment

distance metrics discussed in Chapter 4. Table 5.1 summarizes the results.

The ground truth sequences listed in the table were extracted by manually gauging

similarity between the same shots and audio segments used by the automated techniques. As

described in Section 5.4.2, detected idiomatic sequences are restricted by minimum length

and overlap constraints; we obeyed these same constraints when generating the ground

truth sequence lists. Ground truth sequences are more ambiguously-defined than those

in terms of association matrices, as the continuum of real-world distances between shots

makes it difficult to pinpoint some events. Sequences like topic-change can sometimes be

ill-defined for real video, even though it is unambiguous in quantized association matrices.

Occasionally, the semantic meaning of the idioms gets distorted as well: a small number

of dialog and return-to-anchor sequences had no human characters for example, and the

non-overlap restriction prevented a many independent-event sequences from being properly

detectable.

The discrepancy between the two sets of results in the table makes clear the fact that the

distance metrics—particularly audio—are the limiting factor. A single incorrect distance

can cause a number of misses and false alarms, as the events to be detected are not tempo-

rally localized. Remember that, because the segmentation is done manually in these tests,

the DAV distance matrix is by definition correct; narration, group audio, and alignment

detection results are therefore the same with respect to the association matrix as with the

CHAPTER 5. ASSOCIATION MATRICES 117

against ground truth against assoc. matrixIdiomatic Sequence
P (D) #FA P (D) #FA

(video) 6/6 (100%) 0 6/6 (100%) 1Dialog
(audio) 4/7 (57%) 4 9/9 (100%) 0
(video) 6/6 (100%) 0 7/7 (100%) 0Action
(audio) 3/4 (75%) 3 6/7 (86%) 0
(video) 5/11 (45%) 0 5/6 (83%) 0Return to Anchor
(audio) 0/2 (0%) 1 1/1 (100%) 0
(video) 15/23 (65%) 4 19/19 (100%) 0Character Introduction
(audio) 11/19 (58%) 14 26/26 (100%) 0
(video) 14/23 (61%) 6 20/20 (100%) 0Character Departure
(audio) 11/19 (58%) 11 25/25 (100%) 0
(video) 0/1 (0%) 0 0/1 (0%) 0Topic Change
(audio) 0/2 (0%) 0 0/0 (-%) 0
(video) 2/3 (67%) 0 5/5 (100%) 0Independent Event
(audio) 8/13 (62%) 10 18/18 (100%) 0
(video) 1/1 (100%) 1 2/2 (100%) 0Path Split
(audio) 0/2 (0%) 2 2/2 (100%) 0
(video) 0/1 (0%) 1 1/1 (100%) 0Path Merge
(audio) 0/2 (0%) 1 1/1 (100%) 0

Narration (A/V) 6/6 (100%) 0 6/6 (100%) 0
Group Audio (A/V) 3/3 (100%) 0 3/3 (100%) 0

A/V Alignment (A/V) 2/2 (100%) 0 2/2 (100%) 0
Totals 97/157 (62.2%) 58 164/167 (98.2%) 1

Table 5.1: Detection and false alarm rates for the idiomatic sequence detector over 25.6
minutes of digitized television. As the distance metrics in the association matrix are the
dominant source of error, results are given with respect to the real (human-perceived) events
as well as against the information offered by the distance matrices.

CHAPTER 5. ASSOCIATION MATRICES 118

ground truth events.

It would be worthwhile to expand the scope of statistics available to the idiomatic

sequence detection algorithms. Likely useful information includes segment durations (in

real time), the interaction of other detected sequences in dependency chains (so, e.g., the

first two segments of a dialog aren’t the last two of an action sequence), and intra-shot

information such as face detection.

Chapter 6

Structure via Multimodal
Processing

A key concept in the analysis of multimedia streams is the determination of how the plot

manifests itself in connections between audio and video shots and scenes. Deriving the

long-term temporal structure, beyond the notion of simple scene clustering, therefore yields

significant information about the stream in question. As we saw in the last chapter, fairly

general heuristics can be used to pinpoint short sequences of interest, such as segments that

are narrated by a third party, or instances where programs return to a common shot such

as that of a news anchor. Once again, domain or genre-specific processing can yield further

information about what the temporal structure means in terms of “content.” Even without

domain-specific intelligence, the temporal structure is useful in composing quick summaries

of the stream’s content; this idea will be further developed in Chapter 7.

One method of visualizing and interpreting segment association information (and thus,

temporal structure) is via the matrices described in Section 5.3. The association matrix

summarizes the distance information, but only shows direct, not transitive, links between

segments. Temporal transitivity allows us to associate distant segments as well as construct

directed graphs and trees of the content. In particular, transitivity across modalities is

the key to associating video shots that are not visually similar and audio segments that

are not of the same speaker. Shortest-path algorithms and related ideas can be used on

119

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 120

these graphs to answer specific queries, attempt to reconstruct plot lines, and provide an

automated graphical summary of the media stream.

The use of transitive links also compensates for some imperfections in distance metrics,

as missed direct associations may be “routed around” by multiple links. For example, if

segments s1 and s2 should have a low perceptual distance, but instead are detected as

“different,” it is possible that some segment sk exists such that s1 is close to sk and sk is

close to s2. The converse, unfortunately, is also possible: if s1 and s2 should have a high

perceptual distance, the presence of sk will falsely lower it. And not all types of issues

can be corrected by transitivity; a major impediment to reliably determining lines of plot

progression is the presence of incorrectly characterized segment pairs (close associations that

are missed, or truly different segments that are falsely detected as “same” or “similar”).

6.1 Prior Temporal Structure Work

In the mid 1990’s, researchers began looking for ways to summarize video-only streams using

temporal sequences. Yeung developed a “scene transition graph” to aid in visualization

and analysis; the graph allowed for easy identification of temporal events, clusters, and

progression from one scene to another [3, 100]. Time-adaptive clustering of video shots,

based not only on key frames but statistics such as motion and histogram changes as well,

was further explored by Rui [101]. Lienhart, et al., used audio features, face detection,

and temporal rules to cluster shots into dialog scenes, scenes with similar settings, and

audio-based scene-like intervals [102].

Domain-specific knowledge was exploited by Furht, et al., to help in temporally parsing

news programs (classifying intervals into, for example, anchor-people, stories, weather re-

ports, and commercials)[103, 104]. Story segmentation and classification of news streams,

using video, audio, and transcript information, has also been studied [105, 106].

Wolf used a hidden Markov model (HMM) to classify sequences based on the size of

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 121

the dominant face in each shot’s key frame [107]. This HMM design was later applied to

the structural analysis of documentaries and home video [108, 109]. The authors found

that using more than a handful of sequence types (HMM states) tends to result in over-

segmentation into nearly-equivalent states.

6.2 Association Graphs

While the association matrices are useful in showing immediate connections between seg-

ments, they do not directly show segments that are close due to transitivity. Cross-modality

transitivity can be illustrated by selecting a single element from DV V , using the local min-

imum in the same column of DAV to find an associated audio segment, finding a small-

distance element in that row of DAA to use as an association in audio, using DAV to

“translate” back to a video shot, and so on.

An interpretation in terms of weighted directed graphs shows the transitivity more

clearly. The vertices in these graphs are the set of audio and video segments, S in equa-

tion (5.1), while the edge weights are the corresponding perceptually normalized distances.

Given a judicious choice of dnorm in Section 4.4, the “cost” of a path through the graph

can be computed simply by summing the edge weights. Using the sum is intuitively jus-

tified, as if segment s1 is “similar” to s2, and s2 is “similar” to s3, s1 and s3 are at least

remotely similar. Extending the chain by one more link can yield segments that are essen-

tially “different” (and given dnorm in (4.10), would have a total distance of 0.9). Note that

this summed cost is only an upper bound on the true perceptual distance between the end

segments along the path, and it may well be greater than 1 (our maximum distance). An

alternative cost formulation, which we will use in Sections 6.2.2 and 6.3, is to select the

maximum edge weight as the total cost of a transitive path.

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 122

6.2.1 Shortest Paths

The formulation given above lends itself perfectly to the use of shortest-path algorithms to

find semantic “paths” through a media stream. While one cannot claim such paths always

follow the real plot evolution of a stream, they are nonetheless useful in attempting to answer

the question, “What sequence of events led from A to B?” Without multiple modalities

and a cross-modality distance metric, it would be impossible to answer that question if

A and B were not intrinsically similar to begin with. Given the association matrix as a

starting point, methods such as Dijkstra’s algorithm allow us to answer such chain-of-event

queries relatively quickly [110]. Commercials and other unrelated interrupting sequences

will automatically be ignored, as they will not normally have any close associations with

story segments.

In determining transitive associations of segments, allowable paths through the directed

graph can be restricted in a number of ways. Restrictions are implemented by setting the

weight of disallowed edges to ∞ (equivalently, replacing certain elements of A with ∞).

Possible restrictions include the following, as well as combinations thereof:

• A forward-time only requirement prohibits travel via any edge leading from a seg-

ment that occurs (temporally) after the one it leads to. “After” must be defined

carefully, as audio and video segments can overlap; for our purposes, the segments’

start times are used.

• Reverse-time only restrictions only allow travel to segments that have already con-

cluded; this allows for strictly causal processing. (If some delay is tolerable, this

restriction can be relaxed slightly to allow concurrent segments by waiting until all

have finished before deciding. Deadlock issues may arise, though, if this variable-delay

scheme is not implemented carefully.)

• A contiguous segment condition only allows travel via edges corresponding to over-

lapping segments. This condition forces the creation of many disconnected subgraphs,

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 123

as any complete break in the audio and video action will not be traversable (and it

will be difficult to determine from the graph if an associated segment is returned to

at a later time in the stream).

• Threshold restrictions can be set, above which any edge weight is considered to be

∞. Employing a threshold of 0.99 prohibits “different” segments from ever being

associated, a generally good idea.

After selecting two segments of interest, possibly from different modalities, it is straight-

forward to run Dijkstra’s algorithm on the (possibly restricted) association graph. If run

repeatedly, independent sequences (such as commercials) will be split out into separate con-

nected graphs, while closely-associated segments will cluster in well-connected subgraphs.

6.2.2 Transitive Path Existence

While in theory one could run Dijkstra’s algorithm over every possible segment pair to

determine all transitive connections, such a computationally-intensive method is overkill.

In addition, the number of resulting (transitive) associations would be prohibitive for any

further processing, such as visualization or detection of idiomatic sequences. (Adjacent

segments are commonly related through transitive associations, for instance; this would foil

a dialog detector.) More often what is desired is to know whether any path exists connecting

two apparently unrelated segments. The raw distance in this case is not a concern, provided

each segment pair in the path is associated to some desired degree. The maximum edge

weight along a path, therefore, is what we will use as the “cost” of the path.

This formulation bears a number of similarities to the flow graph problem, but our

situation is even simpler due to fact that we ignore any edges above a certain cost. We

can simply threshold the raw association matrix A as above, then utilize the resulting

graph without regard to edge weights. The coarse 3-step quantization of the perceptually-

normalized distance matrices DV V and DAA makes the selection of a proper threshold

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 124

straightforward; the only real variable is how much cross-modality overlap to require (as

DAV is not quantized). 0.8 is a reasonable distance threshold to use, as it allows 20% or

more time overlap between video and audio segments to count as associating them.

In order to answer the question of whether a suitable path exists between segments sk

and sl, one need only use the thresholded (thereby unweighted) graph in a breadth-first

search algorithm, starting at sk, and terminating when sl is included in the tree or when

all nodes have been tested. The time required to answer the query is proportional to the

number of segments plus number of association matrix elements that meet the threshold.

Due to the nature of the breadth-first search algorithm, it is advantageous to compute the

set of all nodes transitively connected to a given node at the same time.

6.3 Memory-Based Graphs and Matrices

Given that we can now determine the existence of any transitive path as needed, we must

devise a way to find all “interesting” paths without finding so many that the resulting graph

is too cluttered for visualization or other uses. The selection method we will employ is based

on a memory-driven interpretation of temporal associations. Basically, given a particular

audio or video segment, we claim that the most useful associations to know of are the

temporally closest ones. If a low-distance path can be found, that is used; if not, we search

for the temporally-closest node with a path of a slightly higher total distance. This idea is

rooted in the way viewers are likely to perceive a segment, via a mental search for something

they’ve already seen or heard that is the same as (or similar to) the current image or sound.

Most likely, the mental search will settle on the most recent instance within the viewer’s

memory. It is also not unlikely that a segment introducing the type similar to the current

one, or some other key, similar segment in the past, will be the first one remembered; the

former is useful for clustering but not transitive linking, and the latter is rather difficult to

define in an algorithmic sense. We will therefore consider only the temporally-closest links

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 125

from this point on.

Let n1, n2, . . . , nN be the set of nodes (segments) for one modality, either audio or video

in our case. The causal memory-based graph for this modality is constructed as follows:

for (i = 1 to N)

foreach d in [0 0.3]

// find the set of transitively-connected nodes via edges of distance ≤ d

tNodes = BreadthFirstSearch(ni, d)

tNodes = subset of tNodes with indices < i

if (NotEmpty(tNodes))

j = max(tNodes)

add edge from node j to node i

break // out of foreach() loop

end

end

end

Where non-causal processing is possible, this algorithm is repeated on a time-reversed ver-

sion of the stream1. This is done by reversing the direction of the outer loop and the

inequality in line 5, substituting min() for max() in line 7, and by reversing the orientation

of the edge addition in line 8 (so they still point forward in time, even though the search is

backward). If an a priori -unknown delay is permissible in computing some nodes’ forward

associations, the anti-causal “memory” based graph can be computed by keeping a running

list of nodes that have not yet been forward-associated. The two-pass method allows mul-

tiple (forward-time) links to be found leading to the same node, whereas the strictly causal

algorithm is restricted to generating sets of temporally-expanding trees. Stated differently,

the anti-causal pass allows paths of associations to merge in time, as well as split.
1In some cases, a search vector of [0 0.25] in the second line generates better results due to the large

number of false “similar” audio segment pairs with distance 0.3.

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 126

By treating the “add edge from node j to node i” line above as simply D′(j, i) = 1,

predecessor matrices can be constructed that play the same role as the distance matrices

used to derive them. Such two-pass augmented distance matrices are used in the path-split

and path-merge idiomatic sequence detectors described in Section 5.4.2.

6.4 Inferring Plot Threads

Ideally, the diverging and converging paths of the memory-based graph will follow the

semantic chains of plot through the media stream. While higher-level human intelligence

can make further connections among segments by inferring off-camera actions, television

and film directors often use common visual and aural cues in segments to reinforce these

connections (which with luck would cause measured distances to be lower as well). We model

the semantic progression through a stream as shown in Figure 6.1, and the automatically-

generated memory-based graph follows this pattern well. The figure shows a single modality

from a ficticious stream, where each node is a segment and each edge is found by the

two-pass algorithm above (thus likely using cross-modality information, even though the

other modality is not shown). Parallel horizontal paths in the model are independent yet

simultaneous chains of association through the stream; we will call such parallel paths

“threads,” with the hope that they truly capture concurrent threads of plot through the

stream.

Certain events in such a threaded graph are of particular importance. Nodes with no

incoming edges signal the beginning of a new thread, unassociated with any previously-

seen segments either directly or transitively. The transitivity check is what distinguishes

this “introductory” segment from the “character introduction” segments of Section 5.4.2.

The complementary check, for path-ending nodes with no exiting edges, can also be easily

performed.

Vertices where the paths converge in time are also important in the evolution of the plot,

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 127

M

time

SS M

S

Figure 6.1: Schematic graph of our plot thread model. Merge nodes are indicated by an M,
split nodes by an S. Concurrent chains of association are shown as parallel horizontal sets
of nodes.

and even short summaries would likely benefit from their inclusion. If low-level similarity

accurately reflects high-level semantics, such merge nodes would occur when two different

story lines finally meet, joining into a single plot thread. Similarly, path split nodes have

multiple exiting edges and a single entering edge; these correspond to a semantic split into

two “sibling” threads.

Path merge and split nodes can be detected by the methods of Section 5.4.2, using

the memory-based distance matrix described in the previous section. Path beginning and

ending nodes can also be detected, using the same prototypes as the character introduction

and departure idioms, by substituting the memory-based distance matrix D′ for D. Due

to their complex interaction with any errors in both modalities’ measured distance matri-

ces, detection of path-merge/split/start/end segments is not as accurate as that of basic

idiomatic sequences, such as dialog.

To facilitate the generation of plots like Figure 6.1, we assign thread numbers to nodes

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 128

according to the following heuristic:

maxThr = 0

for (i = 1 to N)

if (NumEnteringEdges(ni) 6= 1)

// either root or merge node; allocate new thread

maxThr = maxThr + 1

nodeThr[ni] = maxThr

else

ne = the single node with an edge to ni

if (NumExitingEdges(ne) > 1)

// we have new siblings; form new thread

maxThr = maxThr + 1

nodeThr[ni] = maxThr

else

// same thread as parent

nodeThr[ni] = nodeThr[ne]

end

end

end

On termination, the vector nodeThr[] is the list of thread numbers, one per node. This

method will tend to over-allocate threads, as it creates a new thread for every merge and

split segment. In the absence of further information, this is unavoidable due to the fact

that we cannot always judge which of the two merging/splitting threads is “closer” to the

segment in question, and therefore which of the multiple threads should be preserved after

(before) the merge (split).

In the next chapter, we will examine an application of the transitive linking principles

CHAPTER 6. STRUCTURE VIA MULTIMODAL PROCESSING 129

outlined here. By displaying memory-based (Section 6.3) transitive links in a visual sum-

mary, in addition to relevant direct links, viewers can more easily see distant connections.

In addition, the threading algorithm presented on page 128 will be vital to the placement

of nodes in the graphing methods of Section 7.1.

Chapter 7

Visualization of Multimodal
Structure

The graphical interpretations of association matrices, presented in the last chapter, have a

natural extension in the realm of visualization. In graphical summaries of media streams,

two conflicting goals are both priorities: the summary must be compact enough that the

user can easily decide whether the stream is one that merits further study, preferably

without any scrolling or mouse movement, yet it must contain enough information to answer

rather detailed queries without forcing the user to watch the whole stream. Hierarchical

visualization systems are a perfect fit to these goals.

Ideally the visual summary would be completely intuitive: a user with no prior expe-

rience should be able understand the summary and, with some degree of confidence, know

what to expect when they “zoom in” on a section. In the case of multimodal summaries, it

should be visually clear which segments are simultaneous or overlapping and which are not.

As people often think of time in a linear fashion, we construct visual summaries that use

time as the horizontal dimension. This restriction can force the graphs to be unreasonably

large, but a hierarchical representation should mitigate this problem. In contrast, Yeung,

et al., avoided the issue in their scene transition graphs by requiring human placement of

thumbnails and clusters. A downside to their approach is that the sense of time is often

lost in large or complex scene transition graphs; this is particularly true when the same

130

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 131

clusters are visited multiple times during a program, making it difficult to determine which

transitions happened when.

There have been a number of attempts to visualize multimedia streams in a compact

fashion, with applications from video editing to indexing and search systems. Toklu de-

veloped a linear video browser, aimed at editing applications, using video shots as atomic

playback units and image cross-sections for a time-based representation alongside colored

tracks indicating different speakers (found from closed-caption text)[111]. Minami, et al.,

developed a similar browser, adding the ability to deal with musical segments [89]. Christel,

et al., concatenated carefully selected short clips to construct “skims” roughly one-tenth

the length of the original stream; their studies found that using fewer, longer clips helped

viewers understand the summary better, even if it meant that the summary was incom-

plete [112]. Peaks in motion intensity were used by Nam and Tewfik to produce similar

skim sequences, duplicating frames as necessary to maintain the rhythm of the original pre-

sentation [113]. In addition to the scene transition graph summary representation, Yeo and

Yeung also developed a pictorial summary scheme for news stories and short clips [100, 114].

Davis discussed some of the semantic and representational issues in constructing video sum-

maries while developing his complementary iconic and episodic pair of video interfaces [115].

In a more general setting, Tufte examined ways to visualize multiple streams of cause and

effect simultaneously yet in an intuitive fashion [116].

Existing hierarchical methods tend to focus on a (possibly implicit) user-selectable

threshold to determine the amount of detail to present. DeMenthon, Kobla, and Doer-

mann, for example, constructed a video player that let the user select the coarseness of key

frame generation via a threshold control [117]. The threshold determined how many ver-

tices were computed in their high-dimensional curve simplification, where feature vectors

consisted of the sizes, positions, and movement of the four largest image blobs within a

short time frame. Foote, et al., employed a similar user-controllable threshold on audio and

video-based confidence scores to determine the granularity of displayed index points [85].

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 132

Minami’s “Video in Time” system generated condensed videos at 6 levels of detail, present-

ing the user with a time-based graph indicating the density of frames used at each level [118].

A two-dimensional representation of feature presence versus time was used by Ponceleon

and Dieberger in a hierarchical fashion to summarize sets of video segments [119].

7.1 Plotting a Single Graph

Before considering a hierarchical presentation, we will first construct single layouts based on

the association graphs of Chapter 6. The dominant consideration here is node placement,

which should be automated yet intuitive. As discussed above, we will let time dictate the

horizontal dimension to demonstrate the temporal order of the summary.

Given that we are using segments of video and audio (and possibly other modalities),

node layout must consider whether to group modalities together or allow segments of differ-

ent types to mix. For clarity, we decided on the former approach; placing nodes of different

types in close proximity is potentially confusing to the viewer. Separating audio and video

in the graph also facilitates the placement of partially-overlapping segments. Our designs

will therefore lay out the vertical dimension of audio and video segments independently,

placing the time-aligned video and audio layouts one above another in the final plot. Time

alignment allows us to maintain the intuitive relationship between coincident audio and

video segments. (While the audio and video graph layouts are independent, it should be

remembered that the graph’s edges are based on transitive associations that do use cross-

modality information.)

7.1.1 Horizontal Placement

Properly time-aligning the two modalities is slightly tricky, as we cannot simply use a

linear time scale on the horizontal axis. The shortest segment in a stream—particularly

one with commercial spots—can have a duration well under a second. Making node widths

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 133

proportional to segment lengths means that the shortest segment must still be wide enough

to be visible, and ideally large enough to contain information such as the start time and

a thumbnail image. Calibrating the horizontal scale to this shortest node will result in an

unusably wide graph layout. Keeping node widths constant introduces a complementary

problem: the interval between node start times in the same thread must be wide enough to

see the adjacent edge, yet the absolute duration of the shortest such interval may be very

small. Overlapping nodes would result, an even more egregious problem than a very wide

graph.

As a compromise, we use a non-linear time scale on the horizontal axis. To assist the

viewer’s sense of duration, faint vertical lines are drawn at fixed intervals in real time. To

keep the graph uncluttered, node widths are constant and independent of their segments’

respective durations. The following horizontal layout approach is adopted:

1. Place all video nodes sequentially, independent of their start times, packed so just

enough space appears between them to see any adjacent edge.

2. Form a list of the start times of each placed video node.

3. Interpolating between time-stamps in this list, set each audio node’s horizontal posi-

tion from its start time, without regard to its potentially overlapping another node.

4. Starting with the leftmost audio node, see if the audio node immediately to its right

is too close (the width of the node plus a small inter-node spacing). If it is too close,

shift all audio and video nodes to the right of this node by the amount necessary to

introduce sufficient space.

5. Repeat step 4 for each audio node, working from left to right.

The iteration in steps 4 and 5 effectively spreads out the graph in a nonlinear fashion.

Node start times are used in each case to avoid the temporal anomalies induced by having

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 134

fixed-width nodes of different durations. Once the node spreading is done, the locations of

the vertical cue lines are computed by interpolating among all known time/location pairs.

7.1.2 Vertical Placement

Once the horizontal position of each node is fixed, we must then determine the set of verti-

cal positions; as noted above, this is done independently for audio and video. Even in this

constrained one-dimensional problem, node placement algorithms are nearly always heuris-

tic in nature and depend very much on the intent of the presentation [120]. A reasonable

placement scheme can be devised from the “plot thread” information already extracted in

Section 6.4. Although the schematic layout given in Figure 6.1 works for carefully con-

structed artificial examples, real media streams tend to have a large number of plot threads

throughout their duration, and the connections between these threads can be complex.

Showing each independent thread on its own parallel line would lead to dozens of such

lines and a huge resulting layout. As node placement is mostly an aesthetic issue, we make

the following compromise between showing all plot lines separately and having a compact

graph: parallel lines can be re-used for unrelated plot threads, provided the threads do not

overlap in time.

The following method is used for vertical placement within each modality, where nodeThr[]

(computed by the algorithm on page 128) is the vector of thread numbers for each node:

1. Using nodeThr[], determine the (temporally) first and last node occupying each

thread.

2. Starting with thread 2, see if any other thread t, where t < 2, has a last-occupancy

time smaller than thread 2’s first node. (If multiple other threads meet this criteria,

pick the smallest among them to use as t.) If the condition is true, reassign thread 2 to

thread t: update thread t’s last-occupancy node number, set thread 2’s last occupancy

time to 0, and change elements of nodeThr[] as appropriate.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 135

3. Repeat step 2 for each remaining thread.

4. For each thread still in use, set the vertical position of all its nodes to be just below

all existing nodes.

The thread re-use procedure outlined here is greedy. We make no claim that it will produce

the smallest possible layout, but it runs quickly and guarantees that once a thread starts,

it stays on the same parallel line and is never interrupted. As discussed in Section 6.4, it

is often difficult to know to which of the multiple parents (children) a merge (split) node

is “closest;” after thread re-use, it is possible for the merge (split) node to end up on an

unintuitively-placed parallel line with respect to the parents (children). Note that threading

and relative node placement are done based on the whole set of segments, even though at

coarse summaries in Section 7.3’s hierarchies, many of the influential segments are hidden.

Vertical placement is first done for all video nodes, then for all audio nodes, forcing

audio thread lines to appear below all video threads.

7.1.3 Drawing the Graph

Now that all node placement decisions have been made, we can construct the graphical

representation. W3C’s recently-standardized scalable vector graphic format, SVG, is used

here to allow a familiar web-browser interface that includes zooming and panning facilities

as well as hyperlinks [121]. We have implemented an SVG graph generator based on the

specifications above and in this section.

Video nodes are represented red and audio nodes in blue. All nodes contain an ordinal

index as well as the segment’s start and times. Thumbnails are also included for video

nodes, generated from the DC+2AC (88×60) versions of frames 10% through their respective

shots. When the user points their mouse at one of these thumbnail images, it enlarges to

be more visible. (Although the current implementation doesn’t support it, using the full

uncompressed frame would be even better.) It would be possible to include thumbnails for

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 136

audio segments, likely based on the corresponding “character introduction” segments, but

any incorrectly detected introduction has the potential to be very misleading if used in this

way.

Intra-modality edges, derived from the memory-based graphs, are drawn with arrows

indicating forward time. In a simplistic attempt to prevent edges from crossing unrelated

nodes, some are drawn as arcs instead of straight lines. Links between audio and video

segments, below some distance threshold, are shown without directional arrows. The vertical

alignment of associated audio and video segments reinforces the visual aspect of these links.

As mentioned above, faint lines are drawn at fixed intervals in stream time so that the

user can sense the non-linear temporal dimension. We chose to draw such lines at every 5%

of the stream’s duration.

Figure 7.1 shows an example of such a plot, taken from the beginning of the Charlie

Rose interview clip. Among its successes are the splitting of the two characters of the

initial conversation, joining them at the end, and in finding the isolated logo segment

near the end that is unrelated to any previous audio or video. Also apparent from the

figure is the fact that the editor chose not to precisely align the audio and video segment

boundaries in producing the show; audio segment 2, for instance, contains three video shots.

The paths’ semantic interpretations, however, are interrupted a bit by video segment 8’s

association with a similar-looking shot of different characters. Another issue is the lack of

audio associations between a number of the initial segments; this is a failure of the audio

distance metric described in Chapter 4.

The entire graph for the “Late Show with David Letterman” clip is shown in Figure 7.2.

While virtually indecipherable on paper, this large graph is usable via the zoom and pan

controls of SVG viewers such as Adobe Systems’ web browser plug-in. Like a topographic

map, the density of time-stamp lines early in the graph indicates that the first segments

have a very long duration. The top thread of video segments, which continues through

shot 26, is the main story-line of the show, namely David Letterman speaking either in

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 137

Figure 7.1: Plot of the memory-based graph for the first 65 seconds of the “Charlie Rose”
clip. Red (upper) nodes are video shots, blue (lower) are audio segments, and the vertical
lines signify constant time intervals.

monologue or at his desk. Toward the end of this thread is an interview, where the guest

spends little time talking. Unlike in the Charlie Rose clip, the two participants in the

interview are combined in one thread of transitive associations, due both to the minimal

guest audio and the numerous wide-angle shots showing both participants speaking at the

same time. The second video thread, positioned just below the first from shots two through

thirteen, corresponds to times when the show’s band is playing. Subsequent video threads,

which are all re-assigned to the top row of segments, are portions of a pre-recorded sequence

with music and interview shots of a number of people around Los Angeles.

7.2 Node Ranking

Given the size of the graph for even the 10-minute Letterman clip, it is apparent that hierar-

chical graphing methods will be beneficial. There are a number of methods for hierarchically

collapsing the graphs, some domain-specific and some more general. Our approach is to

collapse graphs by selecting certain segments to be displayed at each hierarchical level. To

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 138

Figure 7.2: Plot of the memory-based graph for the entire “Late Show with David Letter-
man” clip. Red (upper) nodes are video shots, blue (lower) are audio segments, and the
vertical lines signify constant time intervals. Due to width constraints, the plot is wrapped
into four rows.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 139

do this, we need to rank segments according to their priority; rankings are based on inclu-

sion in various idiomatic sequences. Although we have not explored it, there would likely

be some benefit to incorporating non-temporal segment statistics, such as mean volume of

audio or motion vector magnitudes in video.

We rank nodes by their inclusion in idiomatic sequences as shown in Table 7.1; this is

by no means the only possible ordering. Rank 1 signifies the most “important” nodes, thus

the top level coarse summary would include only nodes from that rank. The next coarsest

summary, level 2, would consist of nodes from ranks 1 and 2; the level k summary would

include nodes of all ranks ≤ k. Nodes are members of multiple idiomatic sequences will

be assigned the highest appropriate rank (but no additional bonus, another option). Any

empty ranks are eliminated by shifting all lower-ranked nodes up by one in rank. The exact

manner of linking and drawing edges will be discussed in the next section.

The large number of possible ranks may cause the hierarchical structure to be too

deep, consisting of many nearly-identical levels. As such, we elect to equalize rank sizes by

enforcing a growth factor γ (in our case, γ = 2.0). Once the initial ranks are computed

according to Table 7.1, nodes are ordered by rank in a single list, with nodes of equal rank

in a shuffled order. The first four nodes in the list—typically the first and last audio and

video segments—are then chosen as the new rank 1. The next 4γ nodes are given rank 2

and so on, with rank k having 4γk−1 segments. There may not be enough nodes to fill the

highest rank, but the corresponding hierarchy level will contain all segments. (The intra-

rank shuffling is to prevent early segments from being biased toward higher ranks by being

added first when old ranks are split.) Note that the number of nodes added in each new

level is what increases the factor γ, so the total number of nodes at level l is
∑l
k=1 4γk−1.

The logarithmic nature of this rank reassignment should flatten even the longest stream’s

hierarchy to an acceptable number of levels.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 140

Rank Description
1 First and last audio and video segments
2 video ∩ audio
3 video only Character introduction segments
4 audio only
5 video ∩ audio
6 video only Path merge segments
7 audio only
8 video ∩ audio
9 video only Path split segments
10 audio only
11 video ∩ audio
12 video only

Topic change sequences’ first segments

13 audio only
(i.e., where the topic change occurs)

14 video ∩ audio
15 video only

Return-to-anchor sequences’ first segments

16 audio only
(i.e., the “anchor”)

17 video ∩ audio
18 video only Interlude sequences’ first and last segments
19 audio only
20 video ∩ audio
21 video only Character departure segments
22 audio only
23 video ∩ audio
24 video only Action sequences’ first and last segments
25 audio only
26 video ∩ audio
27 video only

Dialog sequences’ first two segments

28 audio only
(i.e., both participants)

29 Segments aligned in audio and video
30 Video shots greater than 7 seconds and audio segments

greater than 10 seconds long

Table 7.1: Segment rank assignment for hierarchical graphing, where rank 1 signifies the
most important nodes. Inclusion in idiomatic sequences is determined by the methods of
Section 5.4. video ∩ audio indicates intervals that belong to the corresponding idiomatic
sequence in both the video and audio domains.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 141

7.3 Hierarchical Graphing

Given a set of node rankings over the entire video stream, it is straightforward to construct

a hierarchical set of graphs. At each level, the selected nodes (of ranks less than or equal to

the level number) are drawn, and any memory-graph style transitive paths between those

nodes are displayed. (The techniques of Section 6.3 are used to find such transitive paths

among the subset of nodes.) Appropriate below-threshold elements of DAV are drawn as

edges between the corresponding audio and video nodes.

Moving from one level of the hierarchy to the next level is done by clicking on a node.

The next level is then displayed, centered on the node of interest (which is guaranteed by

rank to be included in the new graph). Beyond the third or fourth level, it is likely that the

whole graph will no longer fit within the viewport; the user will have to use the panning

tools to scroll if they would like to see beyond what is shown.

At each level, the entire graph is drawn and, as noted above, the initial view is centered

on the node of interest. This is done to keep with a map-like approach. An alternative

would be to draw only those nodes surrounding the one of interest, dropping the rest of the

graph. We consider this to be an unintuitive loss of information, particularly if the user

wants to find the context of a particular scene. As the initial view at each level is zoomed-in

on the segments of interest, and much of the graph is off-screen, the resulting quantity of

information in our approach is not excessive.

An example of the hierarchical browsing interface is shown in Figure 7.3; for compact-

ness, all subsequent figures will show only the graphs themselves. For large graphs, links

are provided to quickly pan to the beginning or end of the graph, as well as to zoom out

such that the whole graph fits in the window, for a bird’s-eye view.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 142

Figure 7.3: The complete interface to our hierarchical multimedia browser.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 143

7.4 Hierarchical Graph Examples

We conclude this chapter with some detailed examples of hierarchical graphs. This is done

both to get a sense of how the graphs work and are interrelated, as well as to determine

what types of semantic events are commonly captured and which are missed.

“Charlie Rose” Clip

Figures 7.4–7.7 show a typical series of hierarchical views for the five minute PBS “Charlie

Rose” video clip. The top level summary, Figure 7.4, shows just the first and last segments

of each modality. Clicking to zoom in on video shot 1 yields the display shown in Figure 7.5,

consisting of roughly the first sixty percent of the show’s duration. In the audio domain,

the graph correctly represents the end of the first interview thread, in that video shot 17

and beyond are not part of it. The unfortunate video association between shot 8 and

a subsequent similar shot of different people appears in this view as a separate thread,

whereas semantically shot 8 is better associated with earlier shots.

Zooming in on video shot 17 (the far right-hand segment) results in Figure 7.6, a level

3 summary. Most of the nodes in this view are of various video games, narrated by a

single speaker. While the level 3 summary does contain audio segments, neither of the two

occurring during the seven displayed video shots was deemed important enough to plot; one

must pan to the left or right to see audio. It would be reasonable in this case to augment

the graph with well-aligned audio segments where they give some context to the video. A

more general solution would be to design a joint video-audio segment ranking that ensures

some measure of equality among nodes added from each available modality.

Clicking on video shot 15 yields Figure 7.7, the base level summary, which introduces

the audio segment we want. It is here we see the narration clearly, and can infer that the

blue-shirted individual in shot 15’s thumbnail is the one describing the subsequent images.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 144

Figure 7.4: “Charlie Rose” top level graph, showing just the first and last segments of audio
and video.

Figure 7.5: “Charlie Rose” level 2 graph, resulting from clicking on video shot 1 of Figure 7.4.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 145

Figure 7.6: “Charlie Rose” level 3 graph, resulting from clicking on video shot 17 of Fig-
ure 7.5.

Figure 7.7: “Charlie Rose” level 4 graph, showing all video and audio segments within the
displayed interval.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 146

Figure 7.8: “The Late Show with David Letterman” level 2 graph, produced by clicking on
the first video segment in the top level graph.

“Late Show with David Letterman” Clip

The first nine minutes of an episode of CBS’s “The Late Show with David Letterman”

are examined in Figures 7.8–7.10. The top-level summary is not shown, as its 4-segment

structure is the same as the Charlie Rose summary of Figure 7.4. Clicking on the earliest

video shot at the top level results in the view of Figure 7.8. The triangle of associations

among video shots 2 and 3 and audio segment 3 is the show’s band playing, an event roughly

independent of David Letterman’s dialog and subsequent desk shots; the graph shows this

independence from the continuing story-line quite well.

From this point on, the user continually decides to zoom in on video shot 7, yielding

Figure 7.9 followed by Figure 7.10. Clicking on shot 7 there results in the base level graph

view, which in this particular case is identical to Figure 7.10; it already contains all the

nodes within the visible interval.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 147

Figure 7.9: “The Late Show with David Letterman” level 3 graph, produced by clicking on
video shot 7 in Figure 7.8.

Figure 7.10: “The Late Show with David Letterman” level 4 graph, produced by clicking
on video shot 7 in Figure 7.9. Although not the base level graph, this view shows all the
segments in the given interval, so further zooming yields no more information.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 148

“Frasier” Clip

A one-minute clip from NBC’s “Frasier” is examined in Figures 7.11–7.13; as in the Let-

terman example, the top level summary is omitted. Clicking on the first audio segment

results in Figure 7.11, showing the first portion of the clip. The first three audio and video

segments are well-represented as three separate semantic episodes, but beyond that point

the graph is less instructive. A dialog begins in audio segment 5, but that is not apparent

due to the lack of segment 6 in this level’s summary. A similar problem occurs in the video

domain; the structure is not apparent from visible nodes.

The user then clicks on video shot 6 in order to get a better view, producing Figure 7.12.

The dialog is clearly apparent here; in particular, notice how video shots 6 and 8 are properly

associated in the dialog, even though their visual contents are very different! Aside from

the two diagonal edges leading from audio segments 6 and 8, this part of the graph is a

perfect example of a dialog. A more intuitive representation of such dialogs might benefit

a casual user.

The base level view, obtained by zooming in on video shot 4, is shown in Figure 7.13. At

this point, the user can see what happens just before the dialog begins: the side character

in video shot 2 never speaks, the main character walks into the hall in video shot 3, and

he encounters the woman in video shot 4. The only shortcoming is that audio segment 4

should be associated with segment 6, as segment 4 is the true beginning of the dialog; this

is the fault of the audio segment distance metric.

CBS Local News Clip

Summary level 2 of a 7.5 minute CBS local news clip appears in Figure 7.14. The segments

presented roughly correspond to the major elements of this section of the newscast: video

shots 1 and 63 are the beginning of previews of news to come, video shot 4 introduces

the newscast, and video shot 5 begins the first story. Video shots 7 and 29 are the first

non-anchor shots of two respective stories. Shot 40 corresponds to the same story as shot

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 149

Figure 7.11: “Frasier” level 2 graph, generated by zooming in on video shot 1 at the top
level.

Figure 7.12: “Frasier” level 3 graph, generated by zooming in on video shot 6 in Figure 7.11.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 150

Figure 7.13: “Frasier” base level graph, generated by zooming in on video shot 4 in Fig-
ure 7.12.

29, although it takes place in a different location. Missing, though, is a shot representing

the final full story of the newscast, consisting of shots 55–60.

Clicking on video shot 7 gives the layer 3 summary in Figure 7.15. Unfortunately, this

summary does not show more information about the corresponding news story, ostensibly

what the user had intended. Looking at the plot, it is clear that audio information without

corresponding video is not too useful—particularly in the absence of audio “thumbnails.”

As we mentioned in the “Charlie Rose” example, it might be beneficial to balance the

number of audio and video segments presented in any particular time interval.

Not finding what they had intended, the user pans around the graph to see what has

been excluded from the viewport and settles on video shot 55. Zooming in on that shot

yields the view in Figure 7.16. This plot shows the independence of the preview section

at the end of the clip, and indicates that a longer-term story ends just before that point.

Clicking on video shot 54, at the end of that story, gives the base level graph view shown in

Figure 7.17. It is here we finally see the short, independent story from shots 55 through 59;

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 151

Figure 7.14: CBS local news level 2 graph, produced by clicking on video shot 1 at the top
level.

perhaps domain-specific information would have helped in selecting a representative shot

from this story to be given a high rank.

Finally, Figure 7.18 gives a bird’s-eye view of the same base level graph; this is obtained

by clicking on the “zoom to fit” link of the interface in Figure 7.3. It is impossible to see the

thumbnails and shot times at this scale, but the rough structure is visible. Narrated sections

are clear, as are independent scenes. The upper parallel lines among audio segments show

how different portions of the clip are connected by common anchor-people. Segments that

deviate from these two lines involve other speakers, likely correspondents or interviewees in

a particular story. While not quite intuitive to an unfamiliar user, this broad overview is

very useful in gaining some perspective on the clip as a whole.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 152

Figure 7.15: CBS local news level 3 graph, produced by clicking on video shot 7 in Fig-
ure 7.14.

Figure 7.16: CBS local news level 4 graph, produced by clicking on video shot 55 in the
level 3 graph.

CHAPTER 7. VISUALIZATION OF MULTIMODAL STRUCTURE 153

Figure 7.17: CBS local news base level graph, produced by clicking on video shot 54 in
Figure 7.16.

Figure 7.18: Entire CBS local news base level graph, showing all audio and video segments.

Chapter 8

Summary and Conclusions

We have proposed a framework for the temporal analysis of multimedia streams together

with some applications of this framework. Temporal analysis involves three general steps:

segmentation of the media stream, determination of which segments are associated with

one another, and using the association information to determine higher-level events.

The thesis begins with a further development in Chapter 2 of existing video segmen-

tation techniques, allowing for the detection of gradual transitions of a number of types.

Dissolve and fade transitions are studied and properties of frame-triplet correlations are

used to develop a parametric detector. Transitions affecting evolving subsets of pixels, of-

ten incorporating computer effects, are then examined. These transitions, commonly known

as wipes, have a triplet correlation structure in histogram-space that is easy to detect. The

dissolve detector is able to detect 53 of 56 dissolves in 13 minutes of video, with 6 false

alarms, when cascaded with an existing cut detection algorithm. Incorporating a wide vari-

ety of wipes within the test set, 60 of 62 are detected, with 35 false alarms per 23.5 minutes;

the false detections are largely due to significant histogram changes during motion.

Chapter 3 explores the application of temporal segmentation and video processing tech-

niques to the prediction of variable bit rate video bandwidth requirements. Using such

“content-based” boundaries as bandwidth renegotiation points dramatically improves over-

all prediction performance. Within each interval, short-term traffic observations are found

154

CHAPTER 8. SUMMARY AND CONCLUSIONS 155

to be better predictors of traffic than content features, but the latter are beneficial as well.

Combining content-based renegotiation with short-term observations and a neural network

predictor, an improvement of 18% in link utilization is observed over techniques using only

traffic information for prediction. Our work utilizes only the content boundary and intra-

shot information; there are likely significant benefits to incorporating the temporal structure

information of later chapters in bandwidth prediction. In particular, knowledge that a new

shot is similar to one we’ve already seen offers a solid starting point for prediction, as we

know the exact bandwidth characteristics of the old shot.

With the video segmentation problem relatively well-solved, we look in Chapter 4 at

issues in combining audio information with video for true multimodal processing. Segmen-

tation of audio according to speaker is found to be unsatisfactory for the task of determining

long-term temporal structure, but given the segment boundaries, distance metrics can be

developed which distinguish speakers relatively well. In a similar manner, we define a video

segment distance metric that takes into account the temporal progression of actions by

comparing the end of one shot to the beginning of another. As it is difficult to meaningfully

compare these distance metrics, we develop a perceptually-based normalization technique

based on 3-state hypothesis testing. In the video domain, detection probabilities of 53% and

99% are found for identical and different shot pairs, respectively. The audio distance metric

fares worse, with a “same” segment-pair detection rate of 14% and different segment-pair

detection rate of 94%. As we see in later chapters, the contributions of these metrics’ errors

are significant; the audio metric in particular deserves further study.

Given the problems with audio segmentation, and the complex interaction of video

segmentation issues with the segment pair normalization, we choose to hand-segment the

media streams used in the remainder of the thesis. Characterizing the effects of segmentation

errors, not only on segment-pair distances but on temporal structure inferences as well,

remains an open issue that merits exploration.

In Chapter 5 we introduce a representation for audio, video, and cross-modality distance

CHAPTER 8. SUMMARY AND CONCLUSIONS 156

information that will be used throughout the remainder of the work. The general form of

our “association matrix” allows for any number of modalities and distance metrics within

and between them; we use a restricted form consisting of one video and one audio distance

metric, plus a temporal-overlap based cross-modality metric. With streams roughly one half-

hour or less in length, the entire association matrix can reasonably be used at once; a method

for dealing with longer streams is needed that can discard some earlier segments (those

deemed unimportant) in order to save memory by focusing on the most recent associations.

This becomes even more critical if more than two modalities or three distance metrics are

used.

Normalizing the size of association matrix columns to the length of the respective seg-

ments allows for an at-a-glance overview of the structure of the stream under study, as

we see through a number of examples. Perhaps more importantly, the association matrix

allows for straightforward algorithms to detect “idiomatic” sequences such as dialogs, char-

acter introductions, and returning shots to anchor people. We present a few examples, but

an enormous variety is possible. Further, exploring sequences that have both audio and

video requirements seems very worthwhile, as does incorporating non-temporal shot infor-

mation. Domain-specific knowledge could also be used to construct event detectors using

the association matrix.

A graphical interpretation of the association matrices is used in Chapter 6 to facilitate

the study of long-term transitive connections among segments. Shortest path algorithms

are applied to the resulting graphs—possibly with restricted edge sets—to determine the

smallest set of connections between two given endpoints. If all the distance metrics are

perfect, this should correspond to the semantic question, “What sequence of events leads

from A to B?” Transitive links’ existence is used to form memory-based graphs, where

only the temporally-closest (possibly transitive) connections are shown. Heuristics are then

applied to infer parallel semantic “threads,” as well as places where such threads merge and

split.

CHAPTER 8. SUMMARY AND CONCLUSIONS 157

Chapter 7 combines the thread information from the memory-based graphs with the

idiomatic sequence detectors of Chapter 5 to form hierarchical representations of media

streams. Segments are first ranked according to their inclusion in various idiomatic se-

quences, and subsets are chosen to display at each level of the hierarchy. At a given level,

the threaded memory-based graphs are plotted for video and audio side-by-side, with tem-

poral alignments also indicated. Although this is one way of simultaneously representing

audio and video information, future work should consider alternatives that do not require

parallel graphs, yet are intuitive enough to allow inexperienced users to determine plot

connections and events.

Several examples are presented at the end of the chapter. In most cases, important

events are well-represented by the plots and zoomed-in views. The choice of nodes to

include can seem a bit arbitrary at times; a better method for balancing audio and video

segment additions, as well as spreading them out over the duration of the stream, would

be beneficial. Also needed is a way to provide thumbnails for the audio segments; short

sound clips are one possibility, but ideally an image-based thumbnail, based on the speaker,

should be used if the speaker’s face can be reliably determined. An incorrect thumbnail is

worse than none at all.

Another avenue for exploration is the incorporation of features other than temporal

connections in the graphs. For example, the mean volume of an audio segment, or the

amount of motion in a video shot, could be used to influence node rankings. Such statistics

could also be graphically represented in plots as a visual aid. Even more sophisticated

would be to do database or web searches based on particular segments, such as character

introductions, to gauge their level of importance to a typical user (for instance, an interview

of a well-known personality or news anchor is likely more pertinent than one of a man on

the street).

In this thesis, we propose algorithms for extraction of low-level audio and video tem-

poral information (segment boundaries) as well as higher-level relationships, and examine

CHAPTER 8. SUMMARY AND CONCLUSIONS 158

a number of ways to exploit knowledge of such boundaries and relationships. It cannot be

said that we have exhaustively derived the temporal structure of a media stream at the

highest level. We have, however, provided a flexible method of representing available data

and a number of tools to interpret it.

Bibliography

[1] M. Abdel-Mottaleb, N. Dimitrova, L. Agnihotri, S. Dagtas, S. Jeannin, S. Krishna-

machari, T. McGee, and G. Vaithilingam, “MPEG 7: A content description standard

beyond compression,” in Proc. IEEE 42nd Midwest Symposium on Circuits and Sys-

tems, August 1999.

[2] MPEG Requirements Group, “Overview of the MPEG-7 standard,” MPEG Singa-

pore Meeting, edited by J. M. Martinez, http://www.cselt.it/mpeg/standards/

mpeg-7/mpeg-7.htm, March 2001.

[3] Minerva Ming-Yee Yeung, Analysis, Modeling and Representation of Digital Video,

Ph.D. thesis, Princeton University, Department of Electrical Engineering, November

1996.

[4] Ruud M. Bolle, Boon-Lock Yeo, and Minerva M. Yeung, “Video query: Beyond the

keywords,” Research Report RC 20586, IBM, October 1996.

[5] C. Saraceno and R. Leonardi, “Identification of story units in audio-visual sequences

by joint audio and video processing,” in Proceedings of the IEEE International Con-

ference on Image Processing, October 1998, vol. 1, pp. 363–367.

[6] David Bordwell and Kristin Thompson, Film Art: An Introduction, McGraw-Hill,

3rd edition, 1990.

[7] Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound,

MIT Press, 1990.

159

http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm

BIBLIOGRAPHY 160

[8] Eric D. Scheirer, Music-listening Systems, Ph.D. thesis, MIT, June 2000.

[9] Qian Huang, Zhu Liu, Aaron Rosenberg, David Gibbon, and Behzad Shahraray, “Au-

tomated generation of news content hierarchy by integrating audio, video, and text

information,” in Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, 1999, vol. 6, pp. 3025–3028.

[10] Yap-Peng Tan, Drew D. Saur, Sanjeev R. Kulkarni, and Peter J. Ramadge, “Rapid

estimation of camera motion from compressed video with application to video anno-

tation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10,

no. 1, pp. 133–146, February 2000.

[11] Stanley Boykin and Andrew Merlino, “Machine learning of event segmentation for

news on demand,” Communications of the ACM, vol. 43, no. 2, pp. 35–41, February

2000.

[12] HongJiang Zhang, Atreyi Kankanhalli, and Stephen W. Smoliar, “Automatic parti-

tioning of full-motion video,” Multimedia Systems, vol. 1, pp. 10–28, 1993.

[13] Jianhao Meng, Yujen Juan, and Shih-Fu Chang, “Scene change detection in a MPEG

compressed video sequence,” in Digital Video Compression: Algorithms and Tech-

nologies. Proceedings of the SPIE, February 1995, vol. 2419, pp. 14–25.

[14] Hain-Ching H. Liu and Gregory L. Zick, “Scene decomposition of MPEG compressed

video,” in Digital Video Compression: Algorithms and Technologies. Proceedings of

the SPIE, February 1995, vol. 2419, pp. 26–37.

[15] Ke Shen and Edward J. Delp, “A fast algorithm for video parsing using MPEG com-

pressed sequences,” in Proceedings of the IEEE International Conference on Image

Processing, October 1995, vol. 2, pp. 252–255.

BIBLIOGRAPHY 161

[16] Boon-Lock Yeo and Bede Liu, “Rapid scene analysis on compressed video,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 533–544,

December 1995.

[17] Yasuyuki Nakajima, Kiyono Ujihara, and Akio Yoneyama, “Universal scene change

detection on MPEG-coded data domain,” in Visual Communications and Image

Processing. Proceedings of the SPIE, February 1997, vol. 3024, pp. 992–1003.

[18] Masaru Sugano, Yasuyuki Nakajima, Hiromasa Yanagihara, and Akia Yoneyama, “A

fast scene change detection on MPEG coding parameter domain,” in Proceedings of

the IEEE International Conference on Image Processing, October 1998, vol. 1, pp.

888–892.

[19] H. B. Lu, Y. J. Zhang, and Y. R. Yao, “Robust gradual scene change detection,”

in Proceedings of the IEEE International Conference on Image Processing, October

1999, vol. 3, pp. 304–308.

[20] W. A. C. Fernando, C. N. Canagarajah, and D. R. Bull, “Fade and dissolve detec-

tion in uncompressed and compressed video sequences,” in Proceedings of the IEEE

International Conference on Image Processing, October 1999, vol. 3, pp. 299–303.

[21] Aya Aner and John R. Kender, “A unified memory-based approach to cut, dissolve,

key frame and scene analysis,” in Proceedings of the IEEE International Conference

on Image Processing, October 2001, vol. 3, pp. 370–373.

[22] John S. Boreczky and Lawrence A. Rowe, “Comparison of video shot boundary

detection techniques,” in Storage and Retrieval for Still Image and Video Databases

IV. Proceedings of the SPIE, February 1996, vol. 2670, pp. 170–179.

[23] Rainer Lienhart, “Comparison of automatic shot boundary detection algorithms,” in

Storage and Retrieval for Image and Video Databases VII. Proceedings of the SPIE,

January 1999, vol. 3656, pp. 290–301.

BIBLIOGRAPHY 162

[24] Ullas Gargi, Rangachar Kasturi, and Susan H. Strayer, “Performance characterization

of video-shot-change detection methods,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 10, no. 1, pp. 1–13, February 2000.

[25] Hong-Heather Yu and Wayne Wolf, “A multi-resolution video segmentation scheme for

wipe transition identification,” in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, 1998, vol. 5, pp. 2965–2968.

[26] Hong-Heather Yu, Digital Multimedia Library Indexing and Retrieval, Ph.D. thesis,

Princeton University, Department of Electrical Engineering, July 1998.

[27] Ramin Zabih, Justin Miller, and Kevin Mai, “A feature-based algorithm for detecting

and classifying production effects,” Multimedia Systems, vol. 7, no. 2, pp. 119–128,

1999.

[28] Min Wu, Wayne Wolf, and Bede Liu, “An algorithm for wipe detection,” in Proceed-

ings of the IEEE International Conference on Image Processing, October 1998, vol. 1,

pp. 893–897.

[29] Hyeokman Kim, Sung-Jun Park, Jinho Lee, Woonkyung M. Kim, and S. Moon-Ho

Song, “Processing of partial video data for detection of wipes,” in Storage and

Retrieval for Image and Video Databases VII. Proceedings of the SPIE, January 1999,

vol. 3656, pp. 280–289.

[30] C. W. Ngo, T. C. Pong, and R. T. Chin, “Camera break detection by partitioning

of 2D spatio-temporal images in MPEG domain,” in Proceedings of the IEEE Inter-

national Conference on Multimedia Computing and Systems, June 1999, vol. 1, pp.

750–755.

[31] Soo-Chang Pei and Yu-Zuong Chou, “Efficient and effective wipe detection in MPEG

compressed video based on the macroblock information,” in Proceedings of the IEEE

International Conference on Image Processing, September 2000, vol. 3, pp. 953–956.

BIBLIOGRAPHY 163

[32] Mark S. Drew, Ze-Nian Li, and Xiang Zhong, “Video dissolve and wipe detection

via spatio-temporal images of chromatic histogram differences,” in Proceedings of

the IEEE International Conference on Image Processing, September 2000, vol. 3, pp.

929–932.

[33] Adnan M. Alattar, “Wipe scene change detection for use with video compression

algorithms and MPEG-7,” IEEE Transactions on Consumer Electronics, vol. 44, no.

1, pp. 43–51, 1998.

[34] Vikrant Kobla, David Doermann, and Christos Faloutsos, “VideoTrails: Representing

and visualizing structure in video sequences,” in Proceedings of the ACM Conference

on Multimedia, November 1997, pp. 335–346.

[35] Vikrant Kobla, Daniel DeMenthon, and David Doermann, “Special effect edit de-

tection using VideoTrails: A comparison with existing techniques,” in Storage and

Retrieval for Image and Video Databases VII. Proceedings of the SPIE, January 1999,

vol. 3656, pp. 302–313.

[36] W. A. C. Fernando, C. N. Canagarajah, and D. R. Bull, “Wipe scene change detection

in video sequences,” in Proceedings of the IEEE International Conference on Image

Processing, October 1999, vol. 3, pp. 294–298.

[37] Robert A. Joyce and Bede Liu, “Temporal segmentation of video using frame and

histogram space,” submitted to IEEE Transactions on Multimedia, July 2001.

[38] Robert A. Joyce and Bede Liu, “Temporal segmentation of video using frame and

histogram space,” in Proceedings of the IEEE International Conference on Image

Processing, September 2000, vol. 3, pp. 941–944.

[39] Didier Le Gall, “MPEG: A video compression standard for multimedia applications,”

Communications of the ACM, vol. 34, no. 4, pp. 46–58, April 1991.

BIBLIOGRAPHY 164

[40] H. Vincent Poor, An Introduction to Signal Detection and Estimation, Springer-

Verlag, 2nd edition, 1994.

[41] “Resource Reservation Protocol (RSVP),” white paper, Cisco Systems Inc., http:

//www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/rsvp.htm, June 1999.

[42] Raj Jain, “Recent advances in networking,” Course web page, Ohio State University,

http://www.cis.ohio-state.edu/~jain/cis788-99/, 1999.

[43] H. Zhang and E. W. Knightly, “RED-VBR: A new approach to support delay-sensitive

VBR video in packet-switched networks,” in Proceedings of NOSSDAV, April 1995,

pp. 258–272.

[44] S. Chong, S. Li, and J. Ghosh, “Predictive dynamic bandwidth allocation for efficient

transport of real-time VBR video over ATM,” IEEE Journal on Selected Areas of

Communication, vol. 13, no. 1, pp. 12–23, January 1995.

[45] M. R. Izquierdo and D. S. Reeves, “A survey of statistical source models for variable

bit-rate compressed video,” Multimedia Systems, vol. 7, no. 3, pp. 199–213, 1999.

[46] Nikolaos D. Doulamis, Anastasios D. Doulamis, George E. Konstantoulakis, and

George I. Stassinopoulos, “Efficient modeling of VBR MPEG-1 coded video sources,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 1, pp.

93–112, February 2000.

[47] A. M. Dawood and M. Ghanbari, “MPEG video modelling based on scene descrip-

tion,” in Proceedings of the IEEE International Conference on Image Processing,

October 1998, vol. 2, pp. 351–355.

[48] Paul Bocheck and Shih-Fu Chang, “Content-based VBR traffic modelling and its

application to dynamic network resource allocation,” Research Report 48c-98-20,

Columbia University, January 1998.

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/rsvp.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/rsvp.htm
http://www.cis.ohio-state.edu/~jain/cis788-99/

BIBLIOGRAPHY 165

[49] S.-Y. Kung, Digital Neural Networks, Prentice Hall, 1993.

[50] E. W. Knightly and H. Zhang, “D-BIND: An accurate traffic model for providing

QoS guarantees to VBR traffic,” IEEE Transactions on Networking, vol. 5, no. 2, pp.

219–231, April 1997.

[51] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.

[52] J. Kittler, “Feature set search algorithms,” in Pattern Recognition and Signal Pro-

cessing, C. H. Chen, Ed. Sijthoff & Noordhoff, 1978.

[53] D. F. Specht, “A general regression neural network,” IEEE Trans. Neural Networks,

vol. 2, no. 6, pp. 568–576, 1991.

[54] H. Schioler and U. Hartmann, “Mapping neural network derived from the Parzen

window estimator,” Neural Networks, vol. 5, no. 6, pp. 903–909, 1992.

[55] Min Wu, Robert A. Joyce, Hau-San Wong, Ling Guan, and Sun-Yuan Kung, “Dy-

namic resource allocation via video content and short-term traffic statistics,” IEEE

Transactions on Multimedia, vol. 3, no. 2, pp. 186–199, June 2001.

[56] Hau-San Wong, Min Wu, Robert A. Joyce, Ling Guan, and Sun-Yuan Kung, “A

neural network approach for predicting network resource requirements in video trans-

mission systems,” in Proceedings of the IEEE Pacific Rim Conference on Multimedia,

December 2000.

[57] Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press,

2nd edition, 1990.

[58] Min Wu, Robert A. Joyce, Sun-Yuan Kung, and Ling Guan, “Dynamic resource

allocation via video content and short-term traffic statistics,” in Proceedings of the

IEEE International Conference on Image Processing, September 2000, vol. 3, pp.

58–61.

BIBLIOGRAPHY 166

[59] Lawrence Rabiner and Biing-Hwang Juang, Fundamentals of Speech Recognition,

Prentice-Hall, 1993.

[60] Bruce P. Bogert, M. J. R. Healy, and J. W. Tukey, “The quefrency alanysis of time

series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe crack-

ing,” in Proceedings of the Symposium on Time Series Analysis. Brown University,

June 1962, pp. 209–243.

[61] Perry R. Cook, Ed., Music, Cognition, and Computerized Sound: An Introduction to

Psychoacoustics, MIT Press, 1999.

[62] Don Kimber and Lynn Wilcox, “Acoustic segmentation for audio browsers,” in Proc.

28th Symposium on the Interface of Computing Science and Statistics, July 1996, pp.

295–304.

[63] Jonathan Foote, “A similarity measure for automatic audio classification,” in Proc.

AAAI Spring Symposium on Intelligent Integration and Use of Text, Image, Video,

and Audio Corpora, March 1997.

[64] M. Shridhar, N. Mohankrishnan, and M. A. Sid-Ahmed, “A comparison of distance

measures for text-independent speaker identification,” in Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing, April 1983,

vol. 2, pp. 559–562.

[65] Herbert Gish, Man-Hung Siu, and Robin Rohlicek, “Segregation of speakers for speech

recognition and speaker identification,” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, May 1991, vol. 2, pp. 873–

876.

[66] Herbert Gish and Michael Schmidt, “Text-independent speaker recognition,” IEEE

Signal Processing Magazine, vol. 11, no. 4, pp. 18–32, October 1994.

BIBLIOGRAPHY 167

[67] Man-Hung Siu, George Yu, and Herbert Gish, “An unsupervised, sequential learn-

ing algorithm for the segmentation of speech waveforms with multiple speakers,” in

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, May 1992, vol. 2, pp. 189–192.

[68] Lonce Wyse and Stephen W. Smoliar, “Toward content-based audio indexing and

retrieval and a new speaker discrimination technique,” in Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, August 1995.

[69] Jeho Nam, A. Enis Çetin, and Ahmed H. Tewfik, “Speaker identification and video

analysis for hierarchical video shot classification,” in Proceedings of the IEEE Inter-

national Conference on Image Processing, October 1997, vol. 2, pp. 550–553.

[70] Kazumasa Mori and Seiichi Nakagawa, “Speaker change detection and speaker clus-

tering using VQ distortion for broadcast news speech recognition,” in Proceedings of

the IEEE International Conference on Acoustics, Speech, and Signal Processing, May

2001, vol. 1, pp. 413–416.

[71] Matthew A. Siegler, Uday Jain, Bhiksha Raj, and Richard M. Stern, “Automatic

segmentation, classification and clustering of broadcast news audio,” in Proceedings

of the DARPA Speech Recognition Workshop, February 1997, pp. 97–99.

[72] Eric D. Scheirer and Malcolm Slaney, “Construction and evaluation of a robust

multifeature speech / music discriminator,” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, April 1997, vol. 2, pp. 1331–

1334.

[73] George Tzanetakis and Perry Cook, “Sound analysis using MPEG compressed audio,”

in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, June 2000, vol. 2, pp. 761–764.

BIBLIOGRAPHY 168

[74] Zhu Liu, Jincheng Huang, Yao Wang, and Tsuhan Chen, “Audio feature extrac-

tion and analysis for scene classification,” in Proceedings of the IEEE Workshop on

Multimedia Signal Processing, June 1997, pp. 343–348.

[75] Tong Zhang and C.-C. Jay Kuo, “Heuristic approach for generic audio data segmenta-

tion and annotation,” in Proceedings of the ACM Conference on Multimedia, October

1999, pp. 67–76.

[76] Thomas Kemp, Michael Schmidt, Martin Westphal, and Alex Waibel, “Strategies

for automatic segmentation of audio data,” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, June 2000, vol. 3, pp. 1423–

1426.

[77] Silvia Pfeiffer, Stephan Fischer, and Wolfgang Effelsberg, “Automatic audio content

analysis,” in Proceedings of the ACM Conference on Multimedia, 1996, pp. 21–30.

[78] George Tzanetakis and Perry Cook, “Multifeature audio segmentation for browsing

and annotation,” in Proc. 1999 IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics, October 1999, pp. 103–106.

[79] Hari Sundaram and Shih-Fu Chang, “Audio scene segmentation using multiple fea-

tures, models, and time scales,” in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, June 2000, vol. 4, pp. 2441–2444.

[80] Yuh-Lin Chang, Wenjun Zeng, Ibrahim Kamel, and Rafael Alonso, “Integrated image

and speech analysis for content-based video indexing,” in Proceedings of the IEEE

International Conference on Multimedia Computing and Systems, June 1996, pp. 306–

313.

[81] Jincheng Huang, Zhu Liu, and Yao Wang, “Integration of audio and visual information

for content-based video segmentation,” in Proceedings of the IEEE International

Conference on Image Processing, October 1998, vol. 3, pp. 526–530.

BIBLIOGRAPHY 169

[82] Jeho Nam and Amhed H. Tewfik, “Combined audio and visual streams analysis for

video sequence segmentation,” in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, 1997, vol. 4, pp. 2665–2668.

[83] Hari Sundaram and Shih-Fu Chang, “Video scene segmentation using video and audio

features,” in Proceedings of the IEEE International Conference on Multimedia and

Expo, August 2000, pp. 1145–1148.

[84] Zhu Liu and Yao Wang, “Major cast detection in video using both audio and visual

information,” in Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, May 2001, vol. 3, pp. 1413–1416.

[85] Jonathan Foote, John Boreczky, Andreas Girgensohn, and Lynn Wilcox, “An intelli-

gent media browser using automatic multimodal analysis,” in Proceedings of the ACM

Conference on Multimedia, September 1998, pp. 375–380.

[86] Zhu Liu and Qian Huang, “Detecting news reporting using audio/visual information,”

in Proceedings of the IEEE International Conference on Image Processing, October

1999, vol. 3, pp. 324–328.

[87] Chalapathy V. Neti and Andrew Senior, “Audio-visual speaker recognition for video

broadcast news,” in Proceedings of the DARPA Broadcast News Workshop, March

1999.

[88] Sofia Tsekeridou and Ioannis Pitas, “Content-based video parsing and indexing based

on audio-visual interaction,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 11, no. 4, pp. 522–535, April 2001.

[89] Kenichi Minami, Akihito Akutsu, Hiroshi Hamada, and Yoshinobu Tonomura, “Video

handling with music and speech detection,” IEEE Multimedia, vol. 5, no. 3, pp. 17–25,

September 1998.

BIBLIOGRAPHY 170

[90] Howard D. Wactlar, Alexander G. Hauptmann, Michael G. Christel, Ricky A.

Houghton, and Andreas M. Olligschlaeger, “Complementary video and audio analysis

for broadcast news analysis,” Communications of the ACM, vol. 43, no. 2, pp. 42–47,

February 2000.

[91] H. Pan, Z.-P. Liang, T. J. Anastasio, and T. S. Huang, “A hybrid NN-Bayesian archi-

tecture for information fusion,” in Proceedings of the IEEE International Conference

on Image Processing, October 1998, vol. 1, pp. 368–371.

[92] ISO-IEC/JTC1 SC29/WG11, “ISO 11172, MPEG-1: Coding of moving pictures and

associated audio for digital storage media at up to about 1.5 Mbits/s,” 1993.

[93] School of Computer Science Carnegie Mellon University, “Sphinx-II speech recognition

engine,” http://www.speech.cs.cmu.edu/speech/sphinx/, 2000.

[94] Wayne Wolf, “Key frame selection by motion analysis,” in Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing, May 1996, vol. 2,

pp. 1228–1231.

[95] Yueting Zhuang, Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Adaptive

key frame extraction using unsupervised clustering,” in Proceedings of the IEEE

International Conference on Image Processing, October 1998, vol. 1, pp. 866–870.

[96] Jonathan Foote, “Visualizing music and audio using self-similarity,” in Proceedings

of the ACM Conference on Multimedia, October 1999, pp. 77–80.

[97] Caterina Saraceno, “Video content extraction and representation using a joint au-

dio and video processing,” in Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, March 1999, vol. 6, pp. 3033–3036.

http://www.speech.cs.cmu.edu/speech/sphinx/

BIBLIOGRAPHY 171

[98] Rainer Lienhart, Christoph Kuhmünch, and Wolfgang Effelsberg, “On the detection

and recognition of television commercials,” in Proceedings of the IEEE International

Conference on Multimedia Computing and Systems, 1997, pp. 509–516.

[99] T. McGee and N. Dimitrova, “Parsing TV programs for identification and removal of

non-story segments,” in Storage and Retrieval for Image and Video Databases VII.

Proceedings of the SPIE, January 1999, vol. 3656, pp. 243–251.

[100] Minerva Yeung, Boon-Lock Yeo, and Bede Liu, “Extracting story units from long pro-

grams for video browsing and navigation,” in Proceedings of the IEEE International

Conference on Multimedia Computing and Systems, 1996, pp. 296–305.

[101] Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Exploring video structure be-

yond the shots,” in Proceedings of the IEEE International Conference on Multimedia

Computing and Systems, July 1998, pp. 237–240.

[102] Rainer Lienhart, Silvia Pfeiffer, and Wolfgang Effelsberg, “Scene determination based

on video and audio features,” in Proceedings of the IEEE International Conference

on Multimedia Computing and Systems, June 1999, vol. 1, pp. 685–690.

[103] HongJiang Zhang, Shuang Yeo Tan, Stephen W. Smoliar, and Gong Yihong, “Au-

tomatic parsing and indexing of news video,” Multimedia Systems, vol. 2, no. 6, pp.

256–266, 1995.

[104] Borko Furht, Stephen W. Smoliar, and HongJiang Zhang, Video and Image Processing

in Multimedia Systems, chapter 24, Kluwer Academic Publishers, 1995.

[105] Andrew Merlino, Daryl Morey, and Mark Maybury, “Broadcast news navigation using

story segmentation,” in Proceedings of the ACM Conference on Multimedia, 1997, pp.

381–391.

BIBLIOGRAPHY 172

[106] Frederick Walls, Hubert Jin, Sreenivasa Sista, and Richard Schwartz, “Topic detection

in broadcast news,” in Proceedings of the DARPA Broadcast News Workshop, March

1999.

[107] Wayne Wolf, “Hidden markov model parsing of video programs,” in Proceedings of

the IEEE International Conference on Acoustics, Speech, and Signal Processing, April

1997, vol. 4, pp. 2609–2611.

[108] Tiecheng Liu and John R. Kender, “A hidden markov model approach to the structure

of documentaries,” in Proceedings of the IEEE Workshop on Content-based Access of

Image and Video Libraries, June 2000, pp. 111–115.

[109] John R. Kender and Boon-Lock Yeo, “On the structure and analysis of home videos,”

in Proceedings of the Asian Conference on Computer Vision, January 2000.

[110] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to

Algorithms, MIT Press, 1990.

[111] Candemir Toklu and Shih-Ping Liou, “Image and audio sequence visualization and

interaction mechanisms for structured video browsing and editing,” in Proceedings of

the IEEE International Conference on Image Processing, September 2000, vol. 2, pp.

263–266.

[112] Michael G. Christel, Michael A. Smith, C. Roy Taylor, and David B. Winkler, “Evolv-

ing video skims into useful multimedia abstractions,” in Proceedings of the ACM

Conference on Human Factors in Computing Systems, April 1998, pp. 171–179.

[113] Jeho Nam and Ahmed H. Tewfik, “Video abstract of video,” in Proceedings of the

IEEE Third Workshop on Multimedia Signal Processing, 1999, pp. 117–122.

[114] Boon-Lock Yeo and Minerva M. Yeung, “Retrieving and visualizing video,” Commu-

nications of the ACM, vol. 40, no. 12, pp. 43–52, December 1997.

BIBLIOGRAPHY 173

[115] Marc Davis, “Knowledge representation of video,” in Proceedings of the Twelfth

National Conference on Artificial Intelligence (AAAI), 1994, vol. 1, pp. 120–127.

[116] Edward R. Tufte, Visual Explanations: Images and Quantities, Evidence and Narra-

tive, Graphics Press, 1997.

[117] Daniel DeMenthon, Vikrant Kobla, and David Doermann, “Video summarization by

curve simplification,” in Proceedings of the ACM Conference on Multimedia, 1998,

pp. 211–218.

[118] Kenichi Minami, Akihito Akutsu, Hiroshi Hamada, and Yoshinobu Tonomura, “En-

hanced video handling based on audio analysis,” in Proceedings of the IEEE Interna-

tional Conference on Multimedia Computing and Systems, 1997, pp. 219–226.

[119] Dulce Ponceleon and Andreas Dieberger, “Hierarchical brushing in a collection of

video data,” in Proceedings of the 34th Hawaii International Conference on System

Sciences, January 2001, pp. 116–123.

[120] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo,

“A technique for drawing directed graphs,” Proceedings of the IEEE Transactions on

Software Engineering, vol. 19, no. 3, pp. 214–230, 1993.

[121] World Wide Web Consortium, “Scalable vector graphics (SVG) 1.0 specification,”

W3C recommendation, http://www.w3.org/TR/SVG/, September 2001.

http://www.w3.org/TR/SVG/

Index

action sequences, 108

aligned a/v sequences, 115

association matrix, 5, 86

breadth-first search, 124

causality, 6

cepstrum, 68–73, 78, 82, 90

character departure segments, 110

character introduction segments, 5, 109

compressed-domain processing, 9, 10, 11,

43, 46, 49, 69, 70

consistency measure, 57, 62

correlation

analysis of, 25

frame space, 14, 35

histogram space, 21

cut, 3, 9, 23, 46, 87, 111

D-BIND traffic descriptor, 47, 48, 49, 52,

57, 60–65

DC frame, 10, 11, 35, 39, 74

DC+2AC frame, 12, 23, 40, 135

dialog sequences, 5, 107, 108

displaced frame difference (DFD), 12, 16,

30, 35, 39

dissolve, 3, 9, 12, 34, 35

fade, see dissolve

general regression neural network (GRNN),

53, 54, 55–57, 61, 62

generality, as design goal, 6

group audio sequences, 115

hierarchical summaries, 5

histogram space, 18, 21

idiomatic sequences, 5

cross-modality, 114

detection, 102

prototype structure, 104

prototypes, 107

independent event sequences, 111

low complexity, 7

MPEG-7, 2

narration sequences, 115

path merge segments, 5, 113, 127

174

INDEX 175

path split segments, 112, 127

quality of service (QoS), 42–44, 61

resource reservation protocol (RSVP), 43

return-to-anchor sequences, 109

scalable vector graphics (SVG), 135, 136

scene, 3, 5

sequential forward selection (SFS), 53, 55–

57, 61, 62

shot, 3, 5

testing methods, 7

threads, semantic, 5

topic change sequences, 110

variable bit rate (VBR), 4, 43–45, 48, 51,

55, 60, 61

wipe, 3, 9–11, 18, 40

XML, 2

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Gradual Transition Detection
	2.1 Compressed-Domain Processing Preliminaries
	2.2 Frame-Space Dissolve Detection
	2.3 Histogram Space Wipe Detection
	2.4 Analysis of the Correlation Statistic
	2.5 Experimental Results
	2.5.1 Dissolve Detection with Simple Detector
	2.5.2 Dissolve Detection via Parametric Detector
	2.5.3 Wipe Detection

	3 Content Analysis for Traffic Prediction
	3.1 Bandwidth Renegotiation Points
	3.2 Traffic Prediction per Interval
	3.2.1 Media Stream Traffic Descriptors
	3.2.2 Content Features
	3.2.3 Feature Selection for Traffic Prediction
	3.2.4 Consistency-Based Feature Selection

	3.3 Experimental Results
	3.3.1 Prediction MSE
	3.3.2 Trace-Driven Link Utilization

	4 Multimodal Processing
	4.1 Existing Audio/Video Techniques
	4.2 Speaker Segmentation and Distance Metrics
	4.3 Video Shot Distance Metric
	4.4 Audio/Video Distance Normalization

	5 Association Matrices
	5.1 Prior Work
	5.2 Association Matrix Construction
	5.3 A/V Association Matrices
	5.4 Idiomatic Sequence Detection
	5.4.1 Detection of Prototype Sequences
	5.4.2 Generation of Idiomatic Sequences' Prototype Matrices
	5.4.3 Cross-modality Idiomatic Sequences
	5.4.4 Detector Experimental Results

	6 Structure via Multimodal Processing
	6.1 Prior Temporal Structure Work
	6.2 Association Graphs
	6.2.1 Shortest Paths
	6.2.2 Transitive Path Existence

	6.3 Memory-Based Graphs and Matrices
	6.4 Inferring Plot Threads

	7 Visualization of Multimodal Structure
	7.1 Plotting a Single Graph
	7.1.1 Horizontal Placement
	7.1.2 Vertical Placement
	7.1.3 Drawing the Graph

	7.2 Node Ranking
	7.3 Hierarchical Graphing
	7.4 Hierarchical Graph Examples

	8 Summary and Conclusions
	Bibliography
	Index

